An electromagnetic plane wave propagates to the right.
Four vertical antennas are labeled 1-4.
1,2 , and 3 lie in the $x-y$ plane.
1,2 , and 4 have the same x-coordinate, but antenna 4 is located further out in the z-direction.
Rank the time-averaged signals received by each antenna.

The electric field for a plane wave is given by:

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{x}}, t)=\vec{E}_{0} e^{i(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{x}}-\omega t)}
$$

Suppose $\mathbf{E}_{\mathbf{0}}$ points in the +x direction.
In which direction is this wave moving?
A) The $x(\hat{\imath})$ direction. 2
B) The radial $(\hat{\boldsymbol{r}})$ direction 4
C) A direction perpendicular to both $\overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{x}} 4$
D) The $\overrightarrow{\boldsymbol{k}}$ direction 34
E) The \hat{k} direction

If I have an E-field expressible as such:

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{x}}, t)=-E_{0} e^{i(k y-a t)} \hat{k}
$$

How should I write the associated B-field?
A) $B_{0} e^{i(k y-\omega t)} \hat{k}$
B) $-B_{0} e^{i(k y-\omega t)} \hat{k}$
C) $-B_{0} e^{i(k y-\omega t)} \hat{\imath}$
D) $-B_{0} e^{i(k y-\omega t)} \hat{\jmath}$
E) $\quad B_{0} e^{i(k y-\omega t)} \hat{\jmath}$

Here is a snapshot in time of a longitudinal wave:

The divergence of this field is:
A) Zero
B) Non-zero
$\nabla \cdot E=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{r}}{\partial z}$
C) Can't tell

Electromagnetic fields in vacuum with divergence are:

A) Allowed
B) Not allowed

$$
\nabla \cdot E=O
$$

Electromagnetic fields in vacuum that have a longitudinal component are:

A) Allowed 14
B) Not allowed 28

Longitudinal field components for laser beams in vacuum

Lorenzo Cicchitelli and H. Hora
Department of Theoretical Physics, University of New South Wales, Kensington 2033, Australia

R. Postle

Department of Thearetical Physics and the School of Fiber Science and Technology, University of New South Wales, Kensington 2033, Australia
(Received 11 January 1989)
The discovery of Lax, Louisell, and Knight (LLK) [Phys. Rev. 9, 378 (1974)] that electromagnetic beams in vacuum do have a longitudinal component can be proved experimentally from the polarization independence of the energy of electrons from the focus of a laser. For this purpose we had to develop the LLK paraxial approximation to a Maxwellian exact solution for a Gaussian beamInserting the exact solutions into the Maxwellian stress tensor expression of the nonlinear force for the electron acceleration demonstrates a polarization dependence if only the transversal optical components are used. Incloding the exact longitudinal fields results in the experimentally proven polarization independence.

