Linear Independence - Matrix Spaces - Vector Spaces

1. Determine the values of h for which the vectors are linearly dependent.

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-5 \\
7 \\
8
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
1 \\
h
\end{array}\right]
$$

2. Given,

$$
\mathbf{A}=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]
$$

(a) Is \mathbf{w} in the column space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Col} \mathbf{A}$?
(b) Is \mathbf{w} in the null space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Nul} \mathbf{A}$?
3. Given,

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

Determine:
(a) The basis and dimension of Nul \mathbf{A}.
(b) The basis and dimension of $\operatorname{Col} \mathbf{A}$.
(c) The basis and dimension of Row \mathbf{A}.
(d) What is the Rank of \mathbf{A} ?
4. Let,

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
1 \\
3
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
3 \\
1 \\
2
\end{array}\right]
$$

(a) How many vectors are in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(b) How many vectors are in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(c) Is \mathbf{w} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
5. Given,

$$
\begin{equation*}
m y^{\prime \prime}+k y=0, \quad m, k \in \mathbb{R} \tag{1}
\end{equation*}
$$

(a) Show that $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$, where $\omega=\sqrt{\frac{k}{m}}$, are solutions to the ODE.
(b) Show that any function in $\operatorname{Span}\left\{y_{1}, y_{2}\right\}$ is a solution to the ODE. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ Since we know from differential equations that the only solutions to (1) are $0, y_{1}, y_{2}$ we can conclude that the space of solutions to (1) forms a vector space whose basis is y_{1} and y_{2}.

