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15.1 Introduction

Statistical mechanics is the mechanics of systems with very large numbers of
constituent particles — a liter of air with some molecules of and a
cup of water with some water molecules, a meter of copper wire with
some conduction electrons. There are classical and quantum versions of
statistical mechanics. While both have applications under the heading of
“modern physics,” it is the quantum version that is the more important and,
rather surprisingly, the simpler.This chapter is a brief introduction to statistical
mechanics, with an emphasis on the quantum version.

The name “statistical mechanics” reflects that because of the huge num-
ber of particles involved, we can treat them statistically, ignoring the detailed
motion of the individual particles. This has the surprising consequence that
problems in statistical mechanics (either classical or quantum) are often actu-
ally easier than problems involving only three or four particles whose motions
need to be followed in detail. The detailed specification of the microscopic
state, or microstate, of any system of N particles involves giving the wave func-
tions of all N particles (in the quantum case) or the positions and velocities of
all N particles (in the classical case). When N is large, this represents an ap-
palling amount of information; to write down the microstate of a mole of gas
would require more than the world’s total supply of paper! Fortunately, in sta-
tistical mechanics, we have no desire to know the microstate of a system.
Rather, we want to know just a small number of macroscopic variables that
are statistical averages over the many microscopic variables. For example, to
specify the macroscopic state, or macrostate, of a container of helium gas, we
have only to give the volume V, the number of atoms N, and the total energy E
(or, equivalently — as we will see — the temperature T). Statistical mechanics
is the study of the relation between the observable macrostates and the under-
lying, but unobservable and ultimately uninteresting, microstates.
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FIGURE 15.1
Ball-and-spring model of a solid.
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15.2 Temperature

We begin by discussing the meaning of temperature, a key idea in statistical
mechanics. What is temperature? Before the development of statistical me-
chanics and kinetic theory (Section 3.7), temperature was defined in a purely
pragmatic manner as “the thing that thermometers measure.” But this defini-
tion shed no light on the physical microscopic meaning of temperature. Before
kinetic theory was established, physicists could say only that hot things have
higher temperature, cold things have lower temperature, and one can define a
temperature scale that everyone agrees on, so that different thermometers give
consistent results. But what, microscopically, is the difference between hot ob-
jects and cold objects? What happens to water as it is heated? The appearance
and mass of the water remain unchanged. What property is your body sensing
when you dip your hand in water and feel hot or cold? It was a mystery.

Today, we understand that temperature is a measure of thermal energy
— the random, microscopic energy of atoms. You can think of temperature as
a measure of the “jiggling” of atoms. At the atoms of a material have
no energy, or more precisely, they have as little energy as possible, with the sys-
tem residing in its quantum ground state. A classical description of a solid ma-
terial at is an assembly of stationary atoms, rigidly fixed in position. As
the temperature rises, the atoms begin to vibrate about their equilibrium posi-
tions, gently jostling their neighbors. As the temperature rises further, the
atoms jiggle more energetically, crashing against their neighbors until the
chemical bonds between atoms begin to break and the atoms slide past each
other — the phenomenon of melting. With the proper conditions of high tem-
perature and low pressure, the atoms enter a gaseous state, with weakly inter-
acting atoms flying in straight lines between collisions. In this state, higher
temperature means more kinetic energy of the flying atoms. When the hand is
dipped in hot water the sensation of heat is caused by jiggling water molecules
pounding against the atoms of delicate skin cells.The atoms of the cells vibrate
in response, sending complex chemical messages along our nerves.

To quantify this notion of jiggling atoms, this microscopic energy, and to
give a precise definition of temperature, we must first introduce the concept of
degrees of freedom. A degree of freedom is a kind of microscopic repository
of energy, a mode in which an atom can store energy. In the context of statisti-
cal mechanics, the number of degrees of freedom is defined as the number of
squared terms in the detailed expression for the total energy. For example, a
single atom in an ideal gas has only kinetic energy (no potential energy) and it
can move in any of three orthogonal directions x, y, and z, so its energy is

There are three quadratic terms in this expres-
sion, so we say that the atom has three degrees of freedom. An ideal gas of N
atoms has degrees of freedom — three degrees of freedom for each atom.
A particle on a spring, moving in one dimension only, has both kinetic energy 
and potential energy (stored in the spring). The energy is 
Here there are two quadratic terms, and hence, two degrees of freedom. A
solid consisting of N atoms held in place by springlike chemical bonds be-
tween nearest neighbors (Figure 15.1) has degrees of freedom because the
energy of each atom can be written as

where is the displacement from the equilibrium position.1x, y, z2
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*Boltzmann’s constant k must not be confused with either the Coulomb constant
or the wave number Almost invariably, Boltzmann’s constant

appears next to the absolute temperature in the combination so the notation is
usually clear. When there is any danger of confusion, we will use the symbol for
Boltzmann’s constant.

kB

kT,
k = 2p>l.k = 1>14pe02

We can now state an important theorem in statistical mechanics called
the equipartition theorem. The equipartition theorem says that for a classical
system in thermal equilibrium, on average, the total energy of the system is
shared, or “partitioned,” equally among the various degrees of freedom. As an
example, consider a gas of atoms. At any instant, the atoms possess a wide va-
riety of velocities. Some atoms are fast, some are slow, a few are moving very
nearly along the x-axis, others are moving in other directions. As the atoms
collide, they exchange energy, and a given atom has a rapidly fluctuating ener-
gy and velocity as it zigzags from one collision to the next. However, in the
long run, each degree of freedom of each atom, has exactly the same average
energy. This situation can be likened to a box of marbles being violently shak-
en. All the marbles shake with the same average energy. This will be true even
if the marbles have different masses. If one of the marbles in the box is unusu-
ally massive, it will move about with a smaller than average speed, but its aver-
age kinetic energy will be the same as the other marbles. If we arrange
things so that the marbles on the right half of the box are moving much faster
than the marbles on the left half (if the total energy is not shared equally
among the available degrees of freedom), the system is not in thermal equilib-
rium. But the random shaking of the box will quickly even out the energy dis-
tribution, and equilibrium will be achieved.

As another example of the equipartition theorem, consider a mass on a
spring, constrained to move in one dimension. The energy has two terms 

there are two degrees of freedom. If the mass–spring sys-
tem is shaken, the energy will sometimes be all kinetic (when ) and
sometimes all potential (when and the mass is at the turning point). But
on average, the energy is shared equally between the two terms.

Although we have not proved the equipartition theorem, we hope it
seems plausible.A semirigorous proof is explored in Problem 15.9.There is one
detail in the statement of the theorem that is easy to overlook, but will be
important later. The equipartition theorem begins: “For a classical system in
thermal equilibrium ” This caveat means that quantum effects are ignored.
In particular, the equipartition theorem assumes that the total energy of the
system is continuous — not quantized, not discrete. We will see later that the
quantization of energy in quantum systems can lead to a breakdown of the clas-
sical equipartition theorem and an unequal sharing of energy among the
degrees of freedom.

Now that we understand the concept of degrees of freedom and the
equipartition theorem, we can give a precise definition of temperature.The tem-
perature T of a classical system in thermal equilibrium is defined by the relation

(15.1)

where k is called Boltzmann’s constant* and has the experimentally deter-
mined value

k = 1.38 * 10-23 J>K = 8.62 * 10-5 eV>K

1
2 kT = (average energy in each degree of freedom)

Á
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The factor appears in (15.1) so that another equation (the Boltzmann rela-
tion, below) does not contain a factor of 2. The physically important concept
here is that temperature is proportional to the average energy per degree of
freedom, the amount of atomic “jiggling.”

Example 15.1

What is the average translational kinetic energy of a nitrogen molecule in air
at room temperature, What is the molecule’s rms speed?

The translational kinetic energy of a gas molecule is 
where is the speed and and are the

components of the velocity. (In addition to translational kinetic energy,
diatomic molecules, such as nitrogen or oxygen, can have rotational kinetic
energy. See Section 15.9). There are three degrees of freedom in this expres-
sion, and each has an average energy of The total average kinetic ener-
gy is therefore

Notice that the answer does not depend on any of the properties of the mol-
ecule, such as mass. Any molecule in a gas at temperature T will have an av-
erage translational kinetic energy of In estimating thermal energies like
this, it is worth remembering that the factor which characterizes thermal
atomic energy, has the approximate value 0.025 eV at room temperature.

The average kinetic energy is often written where
the brackets indicate an average over thermally fluctuating values. As
discussed in Section 3.8, the root-mean-square (rms) value of the speed is 

defined as Setting the average kinetic energy equal to 
we have

Solving for and recalling that the mass of an molecule is 28 atomic
mass units, we get (using SI units)

This speed is comparable to, but somewhat greater than, the speed of sound.
This is not surprising since sound is a pressure wave in air, propagating by
collisions among the air molecules. Like a message being passed from person
to person, the pressure disturbance in air (the sound wave) would be expected
to travel at about the speed of the messengers, the air molecules.

Example 15.2

What is the rms average speed of a diatomic bromine molecule ( atomic
number ) in air at room temperature?

By the equipartition theorem, the average kinetic energies of bromine
molecules and molecules are identical, at the same temperature.

A12 mv2 BBr = A12 mv2 BN = 3
2 kT
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We can then set up the following ratio:

Using the result from Example 15.1, we have

At any given temperature, the heavier bromine molecules travel more slowly,
on average.

15.3 The Boltzmann Factor

We now come to the central result of statistical mechanics, which, oddly
enough, has no standard name.We will call it the Boltzmann relation,* a name
used in some textbooks. The Boltzmann relation was established before the
development of quantum mechanics; however, we will give the quantum ver-
sion of this equation because it is actually simpler than the original classical
version.We begin by stating this relation without proof; in Section 15.5, we will
explore its derivation.

For a system in equilibrium at temperature T, the probability that the
system is in a particular quantum state i, a particular microstate, with energy

is proportional to 

(15.2)

where P represents probability, and C is a constant of proportionality.
The factor is called the Boltzmann factor, after Ludwig Boltz-

mann, one of the great pioneers of kinetic theory and statistical mechanics.
The constant C is determined by the following normalization argument: The
system must certainly occupy one of the possible states i.Thus the sum over all
i of the probabilities (15.2) must equal 1.

and hence,

We can then rewrite (15.2) as the Boltzmann relation

(15.3)P1state i2 =
e-Ei>kT

a  

j e-Ej>kT

C =
1

a  

i e-Ei>kT

a i P1state i2 = C a i e-Ei>kT = 1

e-Ei>kT

P1state i2 = C e-Ei>kT

e-Ei>kT:Ei ,

vBr = 0.447vN = 0.447 * 1510 m>s2 = 228 m>s

vBr

vN
= AmN

mBr
= A14

70
= 0.447
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*We cannot call it the “Boltzmann equation” because that phrase is already used to
refer to an equation in transport theory. Boltzmann was prolific.
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Ludwig Edward
Boltzmann
(1844–1906, Austrian)

Boltzmann developed the kinetic
theory of gases and invented the
science of statistical mechanics. At
a time when many scientists did
not believe in atoms, Boltzmann’s
work was controversial and it was
subjected to strong attacks, as well
as great praise, throughout his ca-
reer. He was known as an inspiring
lecturer, and sometimes his classes
had to be moved to larger and
larger auditoriums to accommo-
date growing crowds of listeners.
Suffering from episodes of depres-
sion all his life, he finally committed
suicide, in part because he could
not bear the criticism from his col-
leagues. Engraved on his tomb-
stone is the equation 
(Boltzmann used the symbol W for
the multiplicity g).

S = k ln W

500 Chapter 15 • Statistical Mechanics

*In cases where the number of particles is not fixed, but is a variable number N, one
must introduce a chemical potential and the Boltzmann factor becomes 
— but this is a topic for a later course.

e1Nm- E2>kTm,

Notice the use of two different indexes (i and j) in this equation to avoid con-
fusion: We consider a particular state i, but we sum over all states j. The sum

(15.4)

depends on the energies and is called the partition function because it de-
scribes how the total energy of the system is partitioned among the various
available states. Notice that the partition function is a dimensionless number.
This number turns out to be proportional to the number of different quantum
states that the system is likely to be found in. See Problem 15.12.

The great power of the Boltzmann relation lies in its generality.The “sys-
tem” under study might be a hydrogen atom or a neutron star, a block of metal
or one electron in that metal, a mole of gas molecules in a container or one
molecule in that gas. For this relation to apply, only two conditions must be
met:The system must be in thermal equilibrium at temperature T, and the sys-
tem must contain a definite number of particles. For systems in which the num-
ber of particles can change, a modified version of (15.3) must be used, a
version beyond the scope of our discussion.*

Since the Boltzmann factor is a monotonically decreasing func-
tion of E, a particular state of higher energy is always less likely to occur than
a given state of lower energy, at a given temperature. However, it does not fol-
low that higher energies are less likely than lower energies. The probability

that a system is in a quantum state i with energy is not the same
as the probability that the system has energy As we have
seen before, quantum states can be degenerate; that is, there can be several
states with the same energy. In this case, the probability that the system
has energy E is the sum of the probabilities that the system is in any of the
states with that energy.

(15.5)

But all the states i with the same energy E have the same probability 
given by (15.3), so the Boltzmann relation can be rewritten

(15.6)

where is the degeneracy of the energy level E.
An analogy with playing cards may be useful. Consider the 52 cards in a

deck of cards to represent 52 quantum states, and the 4 suits (hearts, clubs,
spades, and diamonds) to be 4 different energies. The degeneracy of each en-
ergy is 13 (ace, two, jack, queen, king). The probability of drawing a particu-
lar card, say, five of hearts, is but the probability of drawing a heart is

an example of P1E2 = g1E2P1i2.
P1heart2 = 13 *

1
52

=
1
4

1>52,
Á

g1E2

P1E2 = g1E2P1i2 =
g1E2e-E>kT

a  

j e-Ej>kT

P1i2,

P1E2 = a
 

states i
with energy E

 P1i2

P1E2
Ei .P1energy Ei2

EiP1state i2

e-E>kT

Ej

a j e-Ej>kT
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In physical systems the degeneracy factor that appears in (15.6) is al-
most always an increasing function of energy. For instance, in Section 15.8, we will
show that for the case of a single particle in a 3-D quantum gas, In
Section 15.5 we will see that for many-particle systems, the degeneracy 
grows very rapidly, typically where N is the number of particles.
While is an increasing function of energy, the Boltzmann factor is a
rapidly decreasing function of energy. The most probable energy of a system at
temperature T is determined by the competition between these two factors, as in-
dicated schematically in Fig. 15.2. When the temperature is increased, the Boltz-
mann factor curve in Fig. 15.2 moves up to the dashed position, resulting in a
higher most probable energy for the system. Higher temperatures mean higher
energies.

Example 15.3

Consider a gas of hydrogen in equilibrium at room temperature,
What is the ratio of the number of atoms in the first excited state to the num-
ber of atoms in the ground state?

The number ratio is the ratio of the probabilities given by (15.6). In
this case the “system” is a single hydrogen atom. The ground-state energy
is the first excited-state energy is 
At room temperature, The degeneracy of the ground
state is since the two spin states of the electron have equal en-
ergy; the degeneracy of the first excited state is since there is a
single state, three states, and a factor of 2 from spin. When we take
the ratio of the probabilities, the partition function factor, can-
cels out, leaving

This is such a fantastically small number that if the observable universe were
filled with hydrogen gas at 1 atm of pressure, then at room temperature there
would not be even one hydrogen atom in the first excited state.

In problems such as this one, where the Boltzmann factor is used to
compute relative probabilities, it is expedient to set up a ratio so that the par-
tition function cancels out. In all but the simplest cases, the partition function
is quite difficult to compute exactly, so we avoid that task wherever possible.

P1E22
P1E12 =

g1E22e-E2>kT

g1E12e-E1>kT
=

g1E22
g1E12  e-1E2 - E12>kT =

8
2

 e-405 L 10-176

a  

j e-Ej>kT,
2p2s

g1E22 = 8
g1E12 = 2

kT = 0.0252 eV.
E2 = 1E1>42 = -3.4 eV.E1 = -13.6 eV;

T L 293 K.

e-E>kTg1E2 g1E2 r EN,
g1E2g1E2 r E1>2.

g1E2
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g(E)

P(E) � g(E) e�E/kT

Low T High T

Low T

High T
e�E /kT

e�E /kT

Energy E

FIGURE 15.2
A highly schematic view of the
competition between two factors in
the Boltzmann relation (15.6).
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Example 15.4

In hydrogen gas, at what temperature is the ratio of the number of atoms in
the first excited state to the number of atoms in the ground state equal to

that is, how hot does hydrogen gas have to be for a significant fraction
of the atoms to be in excited states?

Proceeding as in Example 15.3,

therefore, or

This corresponds to a temperature of The universe was at this
temperature about 100,000 years after the “big bang.” At that time, in addi-
tion to excited hydrogen atoms, there was a substantial density of free elec-
trons and protons. These charged particles scatter light strongly, and so
during that epoch the universe was opaque; light could not travel far before
scattering. At about 300,000 years after the big bang, when the universe had
cooled to 3000 K, virtually all free electrons and protons had combined to
form hydrogen atoms in the ground state. Ground-state hydrogen atoms are
completely transparent to low-energy photons (since photons of energy less
than 10.2 eV cannot be absorbed), so light could travel freely without scat-
tering. Today, some 15 billion years later, astronomers have observed that
space is filled with microwave background radiation. This photon gas, which
is at a temperature of 3 K, is the Doppler-shifted light from that time 300,000
years after the big bang, when matter and radiation “decoupled.”

Example 15.5

Consider a particle with spin half and a magnetic moment in an external
magnetic field B.Two orientations of the moment with respect to the field are
allowed, corresponding to spin up and spin down. Find the probability that the
moment is aligned with the field, in terms of the temperature T and field B.
What is this probability at room temperature (300 K) in a field of 

As described in Section 9.6, an electron in an external magnetic field
has two energy states: a ground state with the moment aligned with the field
and a first excited state with the moment anti-aligned with the field. The sep-
aration of the energy levels is where is the Bohr magneton.
This is an example of a two-level system, a system with exactly two states, a
ground state and an excited state. A two-level system is one of the few sys-
tems for which it is easy to write down the partition function (15.4) exactly. If
we set the zero of energy at the ground-state energy, then the two levels have
energies 0 and [see Fig. 15.3(a)], and the partition function becomes

a j e-Ej>kT = 1 + e-e>kT

e

mBe = 2m
 B B

B = 1.0 T?

M

T L 20,000 K.

kT =
¢E

ln14002 =
10.2 eV

5.99
= 1.70 eV

¢E>kT = ln14002,

P1E22
P1E12 =

g1E22
g1E12 

e-E2>kT

e-E1>kT
= 4e-¢E>kT =

1
100

1>100;
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FIGURE 15.3
(a) The energy spectrum of an
electron in a magnetic field, an
example of a two-level system.
(b) Probabilities that the electron is
found in the ground state and in the
excited state, as functions of kT.

The probabilities of the two states are then, according to (15.3)

These two probabilities are plotted in Fig. 15.3(b). The upper curve is the
probability that the system is in the ground state, with the mag-
netic moment aligned with the field; the lower curve is the probability that
the system is in the excited state. In the high-temperature limit 
both probabilities approach 0.5 and the system is equally likely to be in
either state.

At the energy-level separation is 
and the ground-state probability at

is

At room temperature, we are in the high-temperature regime 
and the populations of the two levels are almost equal. There is a preference
for the moments to be aligned with the B field, but the degree of alignment
(or polarization) is only about 1 part in 500.

15.4 Counting Microstates:The Equal-Probability Hypothesis

The whole of statistical mechanics, including the Boltzmann relation, rests
upon a single axiom — an axiom that, like the Boltzmann relation, has no stan-
dard name. We will call it the

EQUAL-PROBABILITY HYPOTHESIS

For an isolated system (that is, one with constant energy, constant number of parti-
cles, and so forth.) in thermal equilibrium, all microstates accessible to the system
occur with equal probability.

1kT W 2mB2

P1E2 =
1

1 + e-e>kT
=

1

1 + e-2mB>kT
=

1

1 + e-11.16 * 10-42>10.02522 = 0.5012

T = 300 K1kT = 0.252 eV2T = 300 K
10-5 eV>T211T2 = 1.16 * 10-4 eV,

2mB = 12215.79 *  B = 1.0 T,

1kT W e2,
P1E = 02

P1E = 02 =
1

1 + e-e>kT
 and P1E = e2 =

e-e>kT

1 + e-e>kT
=

1

e+e>kT + 1
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(a) (b)

FIGURE 15.4
Some microstates of a gas in a
container. The seemingly peculiar
state (b) is just as likely as any
specific one of the states in (a), but
there are far fewer states of the
type (b) than of the type (a).

*Of course, in poker there is no clear analogue to temperature or pressure. We cannot
push this analogy too far.

By accessible microstates, we mean those microstates that are consistent with
the macroscopic constraints on the system — constraints such as the total en-
ergy, the total number of particles, and, in the case of a gas, the volume and
shape of the container. These constraints define the macrostate. Thus, another
way to state this hypothesis is this: All microstates corresponding to a given
macrostate occur with equal probability. There is no known proof of this as-
sumption; we believe it is true because it leads to many predictions that are all
verified by experiment. We will see in the next section how this hypothesis
leads to the Boltzmann relation.

As an example of the equal probability of accessible microstates, consid-
er a gas of N particles in a container of volume V. The macrostate is given by
(N, E, V), where E is the total energy of the system. Classically, a microstate is
specified by the positions and velocities of each of the N particles. In
Fig. 15.4(a) four microstates are shown all corresponding to the same
macrostate (N, E, V). There is no reason for the system to prefer any of these
states over the others, and they all occur with equal probability. Now consider
the microstate in Figure 15.4(b), also a state with the same (N, E, V) as the oth-
ers.This state appears unusual because all of the particles are in the left half of
the container. However, strange as it may seem, this “left-side-only” mi-
crostate is just as likely as any other particular microstate.The reason we never
observe gas molecules spontaneously clustering on one side of a container is
because the microstates with the particles evenly dispersed vastly outnumber
the microstates in which the particles cluster together. If a microstate is chosen
at random, there is an overwhelming likelihood that it will be one with roughly
uniform density.

To get some feeling for microstates and macrostates, we again resort to a
playing-card analogy. There are a total of cards in a deck, but only

cards in a poker hand. Specifying N defines the macrostate; in this anal-
ogy the macrostate is “a hand of 5 cards” — somewhat akin to specifying
“5 mol of gas at standard temperature and pressure.”* A microstate is a
particular hand, for instance the hand

Note that in specifying a hand, the order of the cards is irrelevant. The hand

1J♥, 3♦, 10♠, 4♣, 6♣2

13♦, J♥, 10♠, 4♣, 6♣2

N = 5
T = 52
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is the same microstate as the first hand; same cards, just different order. Like-
wise, in a gas of indistinguishable particles, interchanging two particles leads to
the same microstate. (Indistinguishability was discussed in Ch. 10 and is fur-
ther reviewed below.) There are many possible poker hands, many possible
microstates, all of which are equally likely to be dealt from a well-shuffled
deck. A royal flush

is just as likely to occur as any particular “junk” hand

The reason junk hands are found so much more often than royal flushes is
that there are only 4 possible royal flush hands (corresponding to the 4 suits),
but there are more than a million possible junk hands.

To compute the probability of being dealt a royal flush, we need to know
how many possible microstates (hands) there are.The number or “multiplicity”
g of five-card hands that can be dealt from a deck with cards
is given by

(15.7)

This formula, which is called the binomial coefficient, can be understood as
follows: The first card dealt in the 5-card hand can be any one of 52 cards; the
second card can be any one of the remaining 51, and likewise for the third, and
so on. The number of different ordered 5-card hands is then

But we have overcounted the number of hands, because the order of the cards
is irrelevant. There are ways of ordering 5 cards, so
we must divide the expression above by 5! to get the number of distinct hands.
The multiplicity g is then

Out of all these hands, only 4 are royal flushes, so the probability of dealing a
royal flush is

This is a very small probability, but not as small as, say, the probability of win-
ning a large state lottery and not nearly as small as the probabili-
ties often encountered in statistical mechanics.

There is a small probability that the air molecules around you will spon-
taneously cluster in a corner of the room, leaving you to suffocate as you read
these words. You need not worry; the probability of this occurring, although

1P L 10-82

P =
4

2598960
L 1.54 * 10-6

g =
T!

1T - N2! N!
=

52!
152 - 52! 5!

= 2,598,960

5 * 4 * 3 * 2 * 1 = 5!

52 * 51 * 50 * 49 * 48 =
52!
47!

=
52!

152 - 52!

g =
T!

1T - N2!N!
 1number of ways of choosing N objects from among T2

T = 521N = 52

13♦, J♥, 10♠, 4♣, 6♣2

110♣, J♣, Q♣, K♣, A♣2

TAYL15-495-532.I  2/10/03  3:27 PM  Page 505



506 Chapter 15 • Statistical Mechanics

1

2

2

1Switch

FIGURE 15.5
A box containing two identical
particles, labeled 1 and 2. Since the
particles are identical, the labeling
occurs in our imagination only. In
classical mechanics the particles are
distinguishable, so that if the particle
positions are switched, we have a
new microstate. This new state,
although physically identical to the
first, can be distinguished from the
first by its history. In quantum
mechanics, the particles are
indistinguishable, so that switching
particles produces the same
microstate. In general, the new
state cannot be distinguished from
the original, even by looking at its
history.

*As in Ch. 10, we use 1 and 2 to represent the appropriate coordinates for particles 1
and 2. For example, for a spin-half particle, 1 = 1r1 , ms12.

nonzero, is fantastically small, as we now demonstrate. Consider a mole of gas
molecules in a container. Any molecule can be anywhere in the container; of
all the possible states (position and velocity) that a single molecule can occu-
py, there are as many on the right half of the container as on the left half. If we
choose a state, at random, for a molecule to occupy, the probability that the
one molecule will be on the left is If we randomly choose 2 states
for 2 molecules, the probability that both particles will be on the left is the
same as getting 2 heads in 2 coin flips, The proba-
bility of choosing N states randomly and finding all N states on the left is

(15.8)

For a mole of gas molecules, and 
(see Problem 15.22). It is difficult to describe how tiny

this number is. If you wanted to write this number in decimal form as
you would have to write zeroes. If you could write a

100,000 zeroes per second, it would take you the age of the universe (
years) to write all those zeroes.

Exactly how one counts the microstates of a gas of molecules depends on
whether the molecules are distinguishable or indistinguishable. Recall from
Section 10.5 that in classical mechanics, identical particles are distinguishable,
meaning that it is possible, in principle, to keep track of which particle is which
by following their trajectories. In quantum mechanics, however, it is not possi-
ble, even in principle, to keep track of which particle is which because the wave
functions of particles can overlap. We saw in Section 10.5 that this indistin-
guishability of identical particles has a profound effect on the symmetry of
many-particle wave functions. When two indistinguishable particles in a gas
have their positions interchanged, all observable properties must be un-
changed; in particular, we must have * All particles can
be classified as either fermions or bosons, depending on whether or not the
wave function changes sign under particle exchange. For fermions,

which leads to the Pauli exclusion principle: No two fermions can
exist in the same quantum state. For bosons, and there is no
constraint on the number of particles that can exist in the same quantum state.

In the real world, particles obey quantum mechanics and identical parti-
cles are always indistinguishable. Interchanging the positions of indistinguish-
able particles leads to the same microstate. In classical mechanics, however,
switching identical but distinguishable particles leads to a different (though
physically identical) microstate. See Fig. 15.5. We now show that, although dis-
tinguishability has a big effect on the number of microstates, it often has no
effect on computed probabilities, such as (15.8).

Once again, we compute the probability that all the gas molecules in a
box will, quite by chance, cluster in the left half of the box. We repeat this

c11, 22 = +c12, 12-c12, 12, c11, 22 =

ƒc11, 22 ƒ2 = ƒc11, 22 ƒ2.

L1010
2 * 10230.000000 Á 001,

10-N ln 2>ln 10 L 10-2 * 1023
P1N2 = 0.5N =  N = 6 * 1023,

P1N2 =
1

2N

P122 = 11>2211>22 = 1>4.

P112 = 1>2.
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Left half Right half

FIGURE 15.6
Seven particles in a box
with quantum states.
There are states in the left
half of the box and another H
states in the right. The counting of
microstates in this system depends
on whether the particles are
distinguishable or not.

H = 20
2H = 40

1N = 72

exercise to show how probabilities are computed by counting microstates and
to show that in the classical regime we get the same probability regardless of
whether or not the particles are distinguishable. We consider N identical parti-
cles in a sealed container and assume that the particles can move freely
between the left and right halves of the container. To keep the math uncom-
plicated, we will model the quantum states of this system very simply: We as-
sume that there are H different single-particle quantum states on the left half
of the box, that is, states with wave functions localized on the left, and there
are another H states on the right. Hence, there are a total of different
quantum states that any of the N particles can occupy (see Fig. 15.6). We also
assume that which means there are many more quantum states than
particles, so the particles are not crowded into a few states. (This is the
nondegenerate, classical regime described in Section 13.11.) If the particles are
fermions, then no more than one particle can occupy any of the states. If
the particles are bosons, any number of particles can exist in any of the quan-
tum states. Here we solve the problem for the case of fermions; the boson case
is left as an exercise (Problem 15.26).

The probability that all the particles will cluster on the left is the ratio of
the number of ways of arranging the N particles among the H states on the left
to the total number of ways of arranging the particles among all states.

(15.9)

This equation is true because all arrangements, all microstates, occur with
equal probability.

Whether the particles are distinguishable or indistinguishable affects the
counting of the microstates. Let us first assume, as a nineteenth-century classi-
cal physicist would, that the particles are distinguishable. As we know, this
assumption is incorrect, but let us proceed anyway.

The number of ways of arranging N distinguishable particles among H
states, with no more than one particle per state is

(15.10)

To see this, imagine placing N balls in H slots.The first ball can go into any of H
slots.The second ball can go into any of the remaining slots, and so on.
The total number of arrangements is 
which is equal to (15.10). Similarly, the total number of arrangements of N dis-
tinguishable particles among states is We
can now compute the ratio (15.9), and we find

(15.11)

This is the probability that all N distinguishable particles will spontaneously
cluster on the left. We now show that this is also the probability that N indis-
tinguishable particles will cluster on the left.

P1left side only2 =
H!
12H2! 

12H - N2!
1H - N2!

g1N, 2H2 = 12H2!>12H - N2!.2H

H # 1H - 12 # 1H - 22Á 1H - N + 12,1H - 12

g1N, H2 =
H!

1H - N2!  (distinguishable particles)

number of ways of arranging N particles among H states of left half

number of ways of arranging N particles among all 2H states.

P1left side only2 =

2H

2H

H W N,

2H
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FIGURE 15.7
The energy spectrum of a simple
quantum system.
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We repeat the calculation with indistinguishable particles.The number of
ways of arranging N indistinguishable particles among H states, with no more
than one particle per state, is

(15.12)

This is the same as (15.7), the poker hand multiplicity equation — N cards
from a 52-card deck, or N particles among H states, the counting argument is
the same. Note that the only difference between equations (15.10) and (15.12)
is an extra factor of in (15.12) because there are ways of ordering N
particles. For the case of indistinguishable particles, these arrangements all
correspond to the same state. In exactly the same way, there is an extra factor
of in the probability 

When we now recompute the ratio (15.9), we have an extra factor of
in both numerator and denominator. The extra factors cancel and we get

exactly the same answer as before, Eq. (15.11). This formula for the probabili-
ty looks rather formidable, but it can be shown that it reduces to the simpler
formula (15.8) in the limit (See Problem 15.25.) We conclude
that in the low-density classical regime, in which the probability is
not affected by the distinguishability of the particles. (There are situations,
however, in which distinguishability does make a difference. One such case is
treated in Problem 15.36.)

15.5 The Origin of the Boltzmann Relation�

�This section contains rather difficult arguments and can be omitted if you are satisfied
to accept the Boltzmann relation (15.3) without proof.

Our goal in this section is to understand how the Boltzmann relation arises
from the equal-probability hypothesis. Although the Boltzmann relation ap-
plies to any quantum system, we will consider the special case of a system with
a very simple energy spectrum: a set of uniformly-spaced, nondegenerate en-
ergy levels given by where is a fixed energy and n is any is a non-
negative integer: 1, (See Fig. 15.7.) This happens to be the
energy-level spectrum of the 1-D simple harmonic oscillator described in
Section 7.9, but the details of the system are irrelevant here; all we need to
know is the energy spectrum.

We assume that this model microscopic system is in thermal equilibrium
with a large thermal reservoir at temperature T. By thermal reservoir, we
mean some large macroscopic system with a very large number of degrees of
freedom, with which our microscopic system can exchange energy. Tempera-
ture is a macroscopic concept; it makes no sense to talk about the temperature
of an isolated microscopic system, such as a single atom. The temperature of a
microscopic system is the temperature of the thermal reservoir with which it is
in equilibrium. The thermal reservoir is assumed to be so large that the ex-
change of energy with our micro-system has negligible effect on the reservoir’s
temperature, that is, on its average energy per degree of freedom. Finally, we
assume that the reservoir and the system are thermally isolated from every-
thing else. Hence, the sum of the energies of the reservoir and our system is
fixed. It is this model “universe” of to which we will
apply the equal-probability hypothesis.

1system + reservoir2

2, Á .n = 0,
eEn = ne,

H W N,
H W N W 1.

1>N!

P1N, 2H2.1>N!

N!
N!1>N!

g1N, H2 =
H!

N!1H - N2!  (indistinguishable particles)
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E

System S

Reservoir R

FIGURE 15.8
A system S in contact with a
thermal reservoir R. The reservoir
is a collection of identical quantum
systems, each with the same simple
energy spectrum.

The thermal reservoir, also called a “heat bath,” can be modeled as a col-
lection of a large number N of microscopic quantum systems in thermal con-
tact. To keep things as simple as possible, we assume that each of the N
quantum systems making up the reservoir is identical to our original micro-
scopic system, with the simple energy spectrum Our universe of

then consists of quantum systems, all in thermal
contact, freely exchanging energy among themselves, as in Fig. 15.8. Let us de-
note the total energy of the by where m is some in-
teger, equal to the number of energy quanta of size Since the total energy of
the is fixed, when the system has energy the
reservoir must have energy 

When the system is in some particular microstate s with energy the
reservoir can be in any microstate with energy According to
the equal-probability hypothesis, all microstates of the 
are equally likely; hence, the probability that the system is in state s is propor-
tional to the number of microstates of the that have the
system in the state s.This is just the number of microstates of the reservoir that
have energy We conclude that the probability that the system
is in state s is proportional to the degeneracy (the multiplicity) of the reservoir
when it has energy Or, in symbols, is in particular
state is in any state with energy 

(15.13)

The key point here is to realize that the equal-probability hypothesis applies
to the we cannot apply it to the microscopic system
alone since the microsystem is not an isolated system; it exchanges energy with
the heat bath. Our job now is to show that Eq. (15.13) is equivalent to the
Boltzmann relation (15.2).

The multiplicity of the reservoir grows very rapidly with the num-
ber r of energy quanta. For example, if there are systems in the reser-
voir, and only one quantum of energy, then the number of reservoir
microstates is corresponding to the single energy quantum
being in any one of the 100 systems. If there are energy quanta, then
there are different microstates with two of the 100 systems con-
taining one quantum each, plus another 100 microstates with both quanta in
one of the 100 systems. Hence, The gener-
al formula for the multiplicity, when then are r indistinguishable quanta dis-
tributed among N distinct systems, is

(15.14)g1r2 =
1N + r - 12!

r!1N - 12!

g122 = 1100 # 992>2 + 100 = 5050.

1100 # 992>2 r = 2
g1r = 12 = 100
1r = 12 N = 100

gR1r2

1system + reservoir2;

P1s2 r gR1m - s2
1m - s2e4,s4 = P3reservoir

P3systemER = 1m - s2e.
ER = 1m - s2e.

1system + reservoir2
1system + reservoir2ER = 1m - s2e. ES ,

ER = re = 1m - s2e. ES = se,1system + reservoir2 e.
me,1system + reservoir2

N + 11system + reservoir2 En = ne.
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FIGURE 15.9
The number of ways of placing r
identical objects in 
containers.

N = 100

*The Boltzmann relation is true always, even at very low temperatures where the
equipartition theorem does not apply. However, when the equipartition theorem does
not apply, we need a more general definition of temperature than the one we have
given in Eq. (15.1). The more general definition relates temperature to the entropy S
and the internal energy U, namely [See, for instance, Thermal Physics
(Ed.) by C. Kittel and H. Kroemer, W H Freeman & Co., 1980.]

1>T = 0S>0U.

The proof of this formula, which is very similar to the proof of (15.7), is ex-
plored in Problem 15.29. A graph of for the case is shown in
Figure 15.9. Note that grows extremely rapidly with increasing r. In the
limit which corresponds to the high-temperature limit where there
are many energy quanta per system, Eq. (15.14) becomes approximately 

where is the total energy of the system. (See Prob-
lem 15.30.)

We can now understand an important qualitative feature of the Boltz-
mann factor, According to the Boltzmann relation (15.2), a particular
state i of lower energy is always more likely to occur than a particular state
j of higher energy When the microscopic system has low energy (small s),
the reservoir has more energy [larger ]. When the reservoir has more
energy, there are more ways to divide up that energy, resulting in a larger num-
ber of accessible microstates, a greater multiplicity, and a greater probability.
Therefore, low-energy states of the system are more probable.

With the multiplicity of the reservoir (15.14) known, the probability
(15.13) that the system is in a given state s can be written as

(15.15)

We leave it as an exercise (Problem 15.31) to show that, in the limit of
large (a big reservoir) and (a high temperature), (15.15) can
be rewritten as

(15.16)

This is none other than the Boltzmann relation (15.2) with the system energy
and temperature To see how temperature enters, recall

that according to the equipartition theorem, the energy per degree of freedom
is For the N oscillators of the reservoir, there are degrees of freedom
(two degrees of freedom for each simple harmonic oscillator).The total energy
available is so we have

or We have imposed the condition so that the mean
energy per oscillator in the thermal reservoir is large compared to the energy
quantum in which case the energy can be regarded as a quasi-continuum
and the classical equipartition theorem applies.*

e,

m W N,kT = 1m>N2e.

1
2 kT =

energy

number of degrees of freedom
=

me

2N

me,

2N1
2 kT.

kT = 1m>N2e.E = se

P1s2 r e-s>1m>N2

m W Nm W s

P1s2 r gR1m - s2 =
3N + 1m - s2 - 14!
1m - s2!1N - 12!

1m - s2Ej .
Ei

e-E>kT.

E = reg1r2 L rN r EN,

r W N,
g1r2 N = 100g1r2
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15.6 Entropy and the Second Law of Thermodynamics�

�This section assumes some previous exposure to thermodynamics and can be omitted.

The multiplicity, or degeneracy, g of a system is directly related to its entropy S.
In thermodynamics the change in the entropy of a system is defined by the
relation

(15.17)

where is the heat added or removed from the system and T is the absolute
temperature in kelvins. This equation applies only to reversible processes, that
is, processes in which the whole system remains in thermal equilibrium so that
it has a well-defined temperature T. Before the development of statistical me-
chanics, the thermodynamic entropy defined by (15.17) was a mysterious
quantity. One could compute its value (or at least changes in its value), but one
could not say what it was microscopically. This uncomfortable situation was
reminiscent of the incomplete understanding of temperature that existed
before the advent of kinetic theory and the atomic hypothesis.

It was Boltzmann who first saw clearly the connection between macro-
scopic thermodynamics and microscopic statistical mechanics. Boltzmann
showed that the thermodynamic entropy S of a macrostate is related to the
natural logarithm of the multiplicity g by the equation

(15.18)

where k is Boltzmann’s constant, so named in honor of the intellectual break-
through represented by this equation. The multiplicity g is the number of mi-
crostates available to the system. With this equation, we can now understand
better why entropy is often called the “disorder” of a system. A disordered
state, like a junk hand, has a larger multiplicity g and hence a larger entropy
than a highly ordered state, like a royal flush.

In light of equation (15.18), we can also better understand one of the
most profound achievements of nineteenth-century physics, the second law of
thermodynamics. The second law, also called the law of increase of entropy,
states that the entropy of a closed system never decreases; it can only increase
or stay constant. For instance, when an internal constraint, such as a barrier be-
tween the two halves of a container of gas, is removed, the entropy always in-
creases. From (15.18) we see that this is because the number of accessible
microstates always increases when constraints are removed.

Example 15.6

A well-insulated container is divided in half by a thin barrier. In the left half
of the container is an ideal gas of N particles at some temperature T; the
right half of the container is empty. The barrier breaks, doubling the volume
of the gas from to as shown in Figure 15.10. What is the increase in
entropy of the system resulting from this adiabatic expansion of the gas?
(An adiabatic process is one in which no heat is added to or removed from
the system.)

2V0 ,V0

S = k ln1g2, 

dQ

dS =
dQ
T

Section 15.6 • Entropy and the Second Law of Thermodynamics 511

TAYL15-495-532.I  2/10/03  3:27 PM  Page 511



512 Chapter 15 • Statistical Mechanics

FIGURE 15.10
Adiabatic expansion of a gas.

This problem can be solved in two ways: by counting microstates and
using (15.18), or by a thermodynamic calculation using (15.17).
Method I, counting microstates. If is the original multiplicity of the system
before the barrier broke, then after the volume of the system doubles, the
new multiplicity is We show this by the following classical argument: If
the gas consisted of only a single particle, the number of microstates g would
double because for every single-particle state on the left, there is a corre-
sponding state on the right. If the gas consisted of two particles, the multi-
plicity would increase by a factor since each particle can be in either
a right state or the corresponding left state and there are possible com-
binations. With N particles, the multiplicity increases by from to 
The final entropy is then

Thus, the increase in entropy is

(15.19)

Method II, thermodynamics. In the free expansion of the gas, no heat was
added or removed and no work was done so the inter-
nal energy U of the gas remains unchanged For an
ideal gas, and so the temperature is also unchanged. The free
expansion of a gas is a nonreversible process, but equation (15.17) 
applies only to reversible (equilibrium) processes. So to use (15.17), we must
imagine some reversible process that results in the same final state of the sys-
tem. One such process is this: The barrier is slowly moved right, like a piston
head, and at the same time the temperature of the system is held fixed by
slowly adding heat to the system to compensate for the work done on the pis-
ton so During this reversible, constant-temperature
expansion, and so

whence,

in agreement with the result of Method I, (15.19). (The third equality fol-
lows from )

The second law of thermodynamics gives direction to the arrow of time.
In this world, the sequence of events is always more order, then less order —

pV = NkT.

¢S = L
 

 

 

dQ
T

= L
2V

0

V0

 

p

T
 dV = L

2V
0

V0

 
Nk

V
 dV = Nk ln¢2V0

V0
≤ = Nk ln122

dQ
T

=
p

T
 dV

dQ = -dW = p dV,
dU = 02.1dQ = -dW,

dS = dQ>TU = 13>22NkT,
1dU = dQ + dW = 02.1dW = 02,1dQ = 02

¢S = Nk ln122

S = k ln12N
 g02 = k ln1g02 + k ln12N2 = k ln1g02 + Nk ln122

2N
 g0 .g02N,

2 * 2
22 = 4,

2N
 g0 .

g0
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lower entropy, then higher entropy. Buildings eventually fall down and be-
come rubble; we die and become dust. But one never sees the reverse; a field
of dirt never spontaneously rearranges its molecules to form a house or a
human. Such a miracle could occur without violating conservation of energy or
momentum, just as a large pocket of vacuum could spontaneously occur in a
gas, or a ball could, of it own accord, roll up hill by becoming cooler than its
surroundings. But these incredible events would violate the second law. They
would result in a decrease in the entropy of the universe and are therefore fan-
tastically unlikely to occur — not impossible, but so unlikely that they would
never occur in a trillion trillion trillion (put in as many trillions as you like)
years. Of all the microstates of the field of dirt, there are many many more
“rubble” states than there are “house” states, many more junk hands than
royal flushes. If you pick a state at random, you are overwhelmingly likely to
find rubble.

So the second law of thermodynamics says that decay is the way of the
world; all things, left to themselves, eventually become more disordered. Het-
erogeneous structures become more uniform, sources of heat cool, houses and
humans turn to dust. Why is it then, that here on earth, we are surrounded by
complex, highly ordered structures, structures of low entropy, like computers
and cities and books and people? It is because these structures did not arise
from spontaneous fluctuations in isolated systems. They were built at great ex-
pense. In order to reduce the entropy in some part of the universe, the entropy
elsewhere must be increased, for the total entropy of the universe can only in-
crease. In our corner of the universe, the Sun is the local entropy factory, be-
coming more disordered at a terrific rate. Rest-mass energy, tightly locked in
compact hydrogen nuclei, is being converted into gamma rays by thermonu-
clear reactions and then into visible photons by scattering from ions. These
photons pour out into space, spreading the Sun’s energy over an immense vol-
ume. There are many many more ways to spread the immense number of pho-
tons about in space than there are ways to arrange the few hydrogen nuclei
that produced those photons in the Sun’s interior. And so the multiplicity and
entropy of the Sun’s energy are increasing all the time. However, as the visible
light photons produced on the 6000 K surface of the Sun spread out through
space, some are captured by photosynthesizing plants, which feed people, who
build houses. Most of the energy taken in by plants and people is eventually
expelled as heat in the form of low-energy infrared photons corresponding to
a temperature near 300 K. Thus, a few high-energy visible photons moving
away from the Sun are turned into many, low-energy infrared photons moving
in random directions, resulting in an overall entropy increase. Biological struc-
tures and all the other wonders of the world are thermodynamically possible
because they are open systems, metabolizing systems, taking in low entropy
structures and expelling high entropy ones. You can create order in some
places, but only by making more disorder elsewhere. We exist because we
leave chaos in our wake.

15.7 The Quantum Ideal Gas — a Many-Particle System

As an example of a macroscopic system that can, in principle, be described in
complete microscopic detail, we consider the quantum-mechanical problem of
an ideal gas: N noninteracting particles in a cubical box. The problems of a sin-
gle particle in a 2-D square box and in a 3-D cubical box were treated in
Section 8.3. We begin by reviewing briefly the results of that section.
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kz

ky

�k =    /a�

FIGURE 15.11
The states of a particle in a cubical
box of side a are identified by
points in k space. The allowed
points form a cubic array with
nearest-neigbor distance equal 
to p>a.

The Schrödinger equation for a single particle of mass M in a three-
dimensional box is

(15.20)

where the potential is zero inside the cubical region 
and is infinite everywhere outside. The wave function

must be zero at the boundaries of the box, since must be con-
tinuous and it is zero outside the box. This problem is solved by the technique
of separation of variables, in which one seeks solutions of the form

(15.21)

Plugging the assumed form (15.21) into equation (15.20) and performing some
algebra (Problem 15.37), we find the solution

(15.22)

where the quantum numbers and are any positive integers (
2, etc.) and the constant A is determined by the normalization condition.
Corresponding to these solutions are the allowed energies,

(15.23)

Some economy of notation is achieved by defining a “k value” associated with
each value of n,

(15.24)

and similarly for and Our wave functions and their energies are then
written,

with energy

(15.25)

Each of our solutions to the single-particle Schrödinger equation is com-
pletely described by the set of three quantum numbers or equiva-
lently, by the three k values Each allowed set of k values

can be represented by a point in an abstract three-dimensional
space called k space, which we represent with three mutually perpendicular
axes and as shown in Figure 15.11. In k space the allowed points

form a cubic array of evenly spaced points. According to (15.24),
as we move along a direction parallel to the axis, the allowed points have
the values and so forth so the spacing of adjacent points is3p>a,2p>a,p>a,kx

kx

1kx , ky , kz2
kz ,ky ,kx ,

1kx , ky , kz2
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Notice that in k space, “distance” has the units of 1/(length). One
can think of and as the three components of a vector k, whose 

magnitude is the “distance” from the point
to the origin. Notice also that, according to (15.25), the energy 

of an allowed state is proportional to this distance squared,
so that points further from the origin correspond to states of higher energy.

It may seem strange to refer to these k’s as if they were real. It may even
seem strange that we use the term k, rather than some name. As mentioned in
Section 6.6, physicists sometimes refer to k as “the wave number,” but most
often, it is simply called k. Physically, the k value is related to the momentum
of a particle by and it is related to the de Broglie wavelength of the
particle by Large k means short wavelength, large momentum, and
large energy. A particular point in the k space array represents a particular so-
lution to the single-particle Schrödinger equation. Like all things new, it takes
some getting used to.

So far, we have considered only a single particle in our cubical box.What
now happens when we place N particles in the box and form a many-particle
system? To answer this question, we must begin by assuming that the interac-
tions between the particles are sufficiently weak that the particles can be re-
garded as noninteracting. This means that the wave function of a single, given
particle in the system of many particles can still be written as (15.22) with an
energy given by (15.23). We assume that the presence of other particles in
other states has negligible effect on this single-particle description. Perhaps
surprisingly, this independent-particle approximation is accurate in many real,
physical systems. For instance, in Chapter 13, we saw that conduction electrons
in a metal behave like a gas of noninteracting particles. This is quite surprising
since electrons interact via the Coulomb force, which is both strong and long
range. However, in a metal, the negatively charged conduction electron gas
coexists with an array of positively charged ions, and the two signs of charges
effectively cancel.

If we have many noninteracting particles in our box, each particle in the
system is described by a point in the lattice of allowed k-space points. A mi-
crostate of this many-particle system is a set of occupied k-space points, or
equivalently, a complete set of quantum numbers 

describing the state of every particle. Which states are likely to be oc-
cupied depends on the temperature and, possibly, on the particle type —
fermion or boson. We consider first the high-temperature case.

If the temperature of our system of noninteracting particles is sufficient-
ly high, and the density of particles is sufficiently low, then our gas is in the
nondegenerate, classical regime, described in Section 13.11 (see Problem
15.40). In this regime the occupied k-space points are widely scattered among
a nearly empty array. As shown in Figure 15.12(a), in k space, the particles
form a sparse cloud with a mean radius given by

(15.26)

Each particle has many unoccupied states to choose from, and particles sel-
dom vie for the same single-particle state — the same point in k space. Conse-
quently, the particle type, fermion or boson, is largely irrelevant. Ordinary
gases, such as air at STP, are in this classical regime.

(mean energy per particle) =
3
2
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FIGURE 15.12
The k-space picture of an ideal gas
in three different regimes. Each dot
represents the state of one particle,
given by the three numbers 
and all of which are positive.
(a) The classical, nondegenerate
regime occurring at high
temperature and low density.
(b) A degenerate gas of fermions
at low temperature and high
density. The N fermions occupy the
N states of lowest energy, that is
the N allowed points closest to the
origin. (c) A degenerate gas of
bosons, also at very low
temperature and high density. 
All N bosons occupy the single
state of lowest energy.

kz ,
ky ,kx ,

If we now lower the temperature so that the average energy per particle
drops, then occupied states begin to crowd near the origin of k space, and par-
ticles compete for a limited number of k-space points. As discussed in Section
13.11, in this low-temperature, degenerate quantum gas limit, the behavior of
the system depends critically on the type of particle involved. Bosons will hap-
pily share occupancy of a k-space point with an unlimited number of other
particles. In contrast, fermions obey the Pauli exclusion principle and allow no
more than one particle per k-space point if we neglect the particles’ spin. If the
particles have spin half, then two particles are allowed at each k-space point,
one spin up and one spin down.

If the particles are fermions, then the N particles will fill the N lowest en-
ergy states nearest the origin. The filled states occupy an eighth of a sphere in
k space, as in Figure 15.12(b). In this case the average energy per particle is
very roughly equal to the Fermi energy, the energy of the highest occupied
states, and is independent of the temperature. (More exactly, at the av-
erage energy per particle and the Fermi energy are related by 
see Problem 15.39.) Recall from Chapter 13 that examples of degenerate
Fermi gases include electrons in a metal, electrons in a white dwarf star, and
neutrons in a neutron star.

If the particles are bosons, then as the absolute temperature is lowered to
zero, all particles crowd into the lowest energy single-particle state, the state
nearest the origin, as indicated in Figure 15.12(c). This many-particle system is
then a Bose–Einstein condensate, as described in Section 13.12. Such an exot-
ic state requires extremely low temperatures and is not normally encountered
in nature; examples of degenerate boson gases include superconductors and
superfluids. For the remainder of this chapter, we will consider only ordinary
gases in the classical nondegenerate regime.

15.8 Energy and Speed Distributions in an Ideal Gas

In this section we apply the Boltzmann relation (15.6) to a single particle in the
3-D ideal gas described in the previous section. Because all particles in a gas
are statistically identical in behavior, any one particle is representative of the
behavior of all particles. We will derive expressions for the distribution of en-
ergies and the distribution of speeds of the particles of a gas in the classical,
nondegenerate regime.

The Boltzmann relation in the form (15.6) applies to any quantum sys-
tem with a discrete spectrum of energies.A particle in a 3-D quantum ideal gas
has a discrete energy spectrum; however, for a large container of gas, the ener-
gy states are so numerous and so closely spaced that it is appropriate to view

8E9 = 13>52EF;
T = 0,
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FIGURE 15.13
A shell of nearly constant energy in
k space.

the states as a continuum. In our k-space picture of the gas (Figure 15.11), the
single-particle quantum states are a distance apart, where a is the
edge length of the cubical container. If the box is macroscopic, then on an
atomic scale the edge length a is very large and is very small. There
are many many quantum states densely packed in k space. Recalling that the
energy of a state is proportional to the square of the k-space distance to the
origin, we see that there is a nearly continuous distribution of energies.

When considering a system with a continuum of allowed energies, in-
stead of asking what is the probability that the system has a specific en-
ergy E, we should rather ask what is the probability that the system has some
energy in a small range from E to The probability distribution is
defined by the relation

Similarly, in place of the degeneracy we use a density of states
defined by the relation

The Boltzmann relation (15.6), when applied to a system with a continuum of
energies, then becomes

(15.27)

As in (15.3), the normalization condition produces the con-
stant in the denominator of (15.27).

We now compute the density of states for a particle in a 3-D
quantum ideal gas. Our strategy is first to compute how many states have

in a range k to and then to change variables
from k to E. In k space we consider a shell of radius k and thickness as
shown in Figure 15.13. Since the states within this shell are all nearly the same

dk,
k + dk,k = 3kx

2 + ky
2 + kz

2
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distance from the origin, these states have nearly the same energy. As de-
scribed in Section 15.7, the states within the shell form a cubic array of points.
These points are separated by a distance so that corresponding to
each point is a k-space volume where is the
volume of the box containing the gas. The number of single-particle quantum
states within this shell is given by

(15.28)

The factor of in the volume of the shell arises because only one octant of
the full sphere appears in k space, as in Figure 15.13.

We now change variables from k to energy E. Corresponding to the wave
number k is an energy Corresponding to the k increment is
an energy increment

We substitute and into (15.28) and note that
the number of states in the range k to is the same as the number of
states in the corresponding energy interval E to which is 
Therefore, (15.28) becomes

(15.29)

Inserting this expression for into (15.27) yields the energy probability
distribution

(15.30)

Notice that the messy constant appearing in (15.29) cancels
out in (15.30). The integral in the denominator of (15.30) is given in Appendix
B, leading to our final expression for the probability distribution of single-
particle energies in an ideal gas,

(15.31)

This distribution is plotted in Figure 15.14.We see that a small fraction of
the gas molecules have energies near zero, corresponding to molecules that
are momentarily near rest. The peak in the distribution occurs at roughly en-
ergy There is a long tail out to high energies, but very few molecules
have energies greater than several kT.
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James Clerk
Maxwell
(1831–1879, Scottish)

A child prodigy with wide interests
in math and physics, young
Maxwell published important pa-
pers on geometry, the rings of
Saturn, elastic solids, and the per-
ception of color. Shy, quiet, and
unassuming, he amazed colleagues
with the breadth of his knowlege.
Though a brilliant lecturer, he was
once turned down for a university
position because he lacked “the
power of oral exposition proceed-
ing on the supposition of imperfect
knowledge or even total ignorance
on the part of pupils.” Maxwell’s
theory of electromagnetism, which
describes light as an electromag-
netic wave, is probably the greatest
accomplishment of nineteenth-
century physics. His pioneering
work in the kinetic theory of gases
helped establish statistical mechan-
ics and the atomic hypothesis.
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FIGURE 15.14
Distribution of single-particle
energies in an ideal gas.

Computing the distribution of speeds of the gas molecules from the dis-
tribution of energies is mathematically straightforward, as we show below, but
is conceptually subtle. Shifting from a description of energies to a description
of speeds requires a delicate mixing of quantum and classical language. We
have been describing a quantum ideal gas whose single-particle states are de-
scribed by wave functions extending over the entire volume of the container.
These wave functions are stationary states, standing wave states with a definite
energy E and a definite wavelength How do we reconcile our quantum-
mechanical view of stationary, delocalized states with our classical view of
localized particles moving with some velocity? The key to reconciling these
apparently contradictory descriptions is wave packets.

As described in Section 6.7, wave-packet states have a spread in wave-
lengths and a corresponding spread in momenta as well as
a spread in angular frequencies and a corresponding spread in energies

Although the wave packets do not have a single definite energy
(as the stationary states do), they do have a well-defined average energy E.
And though they do not possess a single definite momentum, they do have an
average momentum p and a corresponding average speed As shown
in Section 6.10, the average energy E and average speed of the wave packet
are related in the usual classical manner 

Without further ado, let us write and perform a change of vari-
ables from E to to transform the energy distribution (15.31) into a distribution of
speeds. Corresponding to every energy E is a speed and corre-
sponding to the probability of finding a particle in a state with some
energy between E and is the probability of finding the particle 
with corresponding speed between and Furthermore, since 

Substituting for E, and in (15.31) yields

(15.32)

This expression is called the Maxwell speed distribution because it was first
derived by Maxwell, using an entirely different approach before the develop-
ment of either quantum mechanics or statistical mechanics.
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FIGURE 15.15
Speed distribution of oxygen and
hydrogen gas at T = 300 K.

Oven

Variable speed
spinning cylinder

DetectorFIGURE 15.16
Apparatus to measure the speed
distribution of gas molecules.

The Maxwell speed distribution (15.32) is plotted in Figure 15.15 for both
molecules and lighter, faster molecules. The distribution of speeds is seen

to be qualitatively similar to the energy distribution. There is a peak near the 
speed at which There is a tail out to higher speeds, but few mole-
cules have speeds higher than about three times the most probable speed, which
would correspond to an energy nine times the most probable energy.This figure
explains why there is almost no hydrogen in the earth’s atmosphere. For hydro-
gen, the tail of the speed distribution extends beyond the earth’s escape speed
(about ) just enough so that any hydrogen in the atmosphere eventually
leaks into space. Smaller astronomical bodies, such as the moon and asteroids,
have such low escape velocities that all gases on their surfaces escape to space.

The Maxwell speed distribution has been experimentally verified with ap-
paratus of the type shown in Fig. 15.16. An oven, containing a known gas at a
well-controlled temperature, has a small hole through which gas molecules can
escape into an evacuated test chamber. For a given rotation rate of the spinning
cylinder, only molecules of a particular speed can pass through the slot of the
spinning cylinder and strike the detector. The speed distribution is determined
by measuring the detector signal as a function of the rotation rate of the cylinder.

Given the probability distributions and we can compute the
average energy or mean energy and mean speed of a particle by using
the expectation-value formula (7.69),

and

8v9 = L
q

0
 vp1v2 dv

8E9 = L
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*As is traditional in chemistry and statistical mechanics, we use the symbol U to repre-
sent the total internal energy, which in this case is the same as Be careful not con-
fuse this with our previous use of U for potential energy.

8E9.

These are often called the “thermal average” values. We leave it as exercises
(Problems 15.47 and 15.48) to show that the thermal average values of E and are

and

Of course, we already knew the first result, from the equiparti-
tion theorem.

It is not hard to show that for an ideal gas, the rms speed 
is given by which is slightly larger than the mean speed

The rms average speed is often a more useful quantity than the mean
speed because the rms speed is more clearly related to the mean energy via
the equation 

15.9 Heat Capacities

The energy levels of atoms or molecules in the gaseous state can be readily de-
termined by measuring the spectrum of light emitted when the gas is heated.
Each line in the spectrum corresponds to a transition between a pair of dis-
crete energy levels in the atom or molecule. In contrast, it is quite difficult to
measure directly the energy spectrum of many-particle condensed-matter sys-
tems such a block of copper or a container of liquid helium — systems in which
the energy levels are so closely spaced that they form a continuum. However,
important clues about the energy spectrum can be gleaned from a measure-
ment of the system’s heat capacity.The heat capacity C of a system is defined as

(15.33)

where is the thermal average energy of the system. To raise the tempera-
ture of a system by a small amount we must input an amount of energy

Usually the energy is added to the system in the form of heat, so
the heat capacity C is the amount of heat absorbed (or released) when the tem-
perature is raised (or lowered) by one degree Kelvin.As we will see, the depen-
dence of the heat capacity on temperature yields information on the spectrum
of quantum energy levels of the system.

The heat capacity of a monatomic ideal gas has a very simple form. Ac-
cording to the equipartition theorem (15.1), the energy per degree of freedom
of a gas is In a gas, the number of degrees of freedom per atom is 3 (one
each for translational motion in the x, y, and z directions). If the total number
of atoms is N, the total energy which we write as* U is

 = 13N2112 kT2 = 3
2 NkT

 U = 1number of degrees of freedom2 * 112 kT per degree of freedom2
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FIGURE 15.17
Measured heat capacity of
germanium(solid line) and the
predictions of the Einstein model
and Dulong–Petit.

The heat capacity of a monatomic ideal gas is then

where R is the universal gas constant and
is the number of moles. This temperature-independent value 

per mole for the heat capacity of an ideal gas has been abundantly confirmed
by experiment.

The heat capacity of a solid is more complicated than that of a gas. A
solid can store energy in more ways than a gas can — it has more degrees of
freedom — and, as we will see, the heat capacity of a solid is temperature-
dependent.A crystalline solid with its springlike chemical bonds between atoms
can store energy in the vibrations of the atomic lattice, leading to a “lattice heat
capacity.” In addition, if the solid is a metal, the conduction electrons can store
energy and contribute to the total heat capacity. This electronic heat capacity is
absent in electrical insulators, and even in metals it is generally small compared
to the lattice heat capacity. Here, we will consider insulating solids only.

An insulating solid with N atoms has degrees of freedom. Recall
(Section 15.2) that in a solid, each atom has six degrees of freedom because the
total energy of each atom has three kinetic energy terms 
and three potential energy terms The equipartition theo-
rem then leads us to predict that for any solid with N atoms, the total energy
and lattice heat capacity are given by

and

This result for the heat capacity of solids is called the Dulong–Petit law. It is
found to agree with experiment at high temperatures, but at low tempera-
tures, typically somewhat below room temperature, the heat capacity falls
rapidly as the temperature is lowered and approaches zero as as
shown in Fig 15.17.

This disagreement between theory and experiment was deeply puzzling
to physicists of the early twentieth century. It was Einstein who showed that the
discrepancy is due to a quantum effect that causes a breakdown of the classical
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equipartition theorem. Recall that the equipartition theorem assumes that the
energy of the system is continuous, not discrete. Real physical systems obey
quantum mechanics and have quantized energies. If the temperature is high
enough that where is the separation between adjacent energy
levels, then the energy spectrum can be approximated as a continuum and the
equipartition theorem applies. But when the temperature is so low that

the equipartition theorem does not apply and the energy quantiza-
tion has a profound effect on the heat capacity. The vanishing of the heat ca-
pacity at low temperatures in quantum systems can be understood
qualitatively as follows: If the temperature is so low that where

is the energy gap between the ground state and the first excited state, then
the system will almost always be in its ground state. A small increase in tem-
perature will not give the system enough thermal energy to jump up to the first
excited state and it will remain in the ground state. The excited states are said
to be “frozen out.” There will be (almost) no increase in the mean energy 
when the temperature is increased, so 

To explain in detail the low-temperature heat capacity of solids (Fig. 15.17),
we need a quantum calculation of the thermal average energy of an
atom in a solid. This calculation was first performed by Einstein.

The Einstein Model of Heat Capacity

An atom in a solid can be modeled as a simple 3-D harmonic oscillator — a
mass m with potential energy where r is the distance from the equi-
librium position and the spring constant k depends on the strength of the
chemical bonds with neighboring atoms. We will begin by computing the heat
capacity of a 1-D harmonic oscillator and then will generalize to 3-D. As de-
scribed in Section 7.9, the energy levels of a 1-D harmonic oscillator are given
by where and To simplify things,
we can reset the zero of energy so that where Using the
Boltzmann relation (15.3), we have (all sums shown are over )

The last expression can be simplified by making use of the following identities

(15.34)

(See Problem 15.51.) The mean energy is then
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And the heat capacity of a single 1-D harmonic oscillator is

(15.36)

where Notice that Boltzmann’s constant k has the units of heat capac-
ity (recall and hence ), so (15.36) is written as k multiplied
by dimensionless quantities.

A 3-D simple harmonic oscillator can be regarded as three independent
1-D harmonic oscillators (one each for the x, y, and z directions). The total
energy of the 3-D oscillator is just the sum of the energies of the three 1-D
oscillators, and we conclude that the heat capacity of a 3-D harmonic oscilla-
tor, which we use to model a single atom in a solid, is three times the expres-
sion in (15.36),

Einstein made the simplifying assumption that the atoms in a solid could
be treated as independent 3-D harmonic oscillators, so that the total energy of
the collection of N atoms is just the sum of the energies of the N independent
atoms, and the total heat capacity of the solid is simply

There is an unknown parameter in this model, namely the value of 
the energy-level spacing of the simple harmonic oscillator used to approxi-
mate the vibrational behavior of an atom. The parameter is regarded as a
fitting parameter, and its value is adjusted to give the best agreement between
theory and experiment. The resulting Einstein model of heat capacity is plot-
ted in Fig. 15.17 along with experimental data on the heat capacity of germa-
nium. We see that the model gives a very good fit with a temperature-
independent heat capacity at high temperatures and a vanishing
heat capacity at low temperatures.At very low temperatures,
the Einstein model does not give accurate quantitative results, because of a
failure of the independent-oscillator approximation; nevertheless, the quali-
tative success of the model in explaining the heat capacity of solids was one of
the earliest successes of quantum theory.

Example 15.7

Consider again the two-level system described in Example 15.5. Compute
the heat capacity C of the system as a function of temperature.

A two-level system, such as a spin magnetic moment in an external
magnetic field, has a ground state with energy and a single excited
state with energy The mean thermal energy of such a system at tem-
perature T is

(15.37)

Both sums are over two states only: i = 1, 2.
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 e-Ei>kT
=

0 + e e-e>kT

1 + e-e>kT
=

e

e+e>kT + 1

E = e.
E = 0

10 6 T V Uv2,1T 7 Uv2,

e

e = Uv,

Csolid =
d

dT
 8E9solid = NCatom = 3NC1D

8E9solid = N8E9atom

Catom = 3C1D.

k = E>TE = kT,
e = Uv.

C1D =
d8E9
dT

= ka e
kT
b2

 
ee>kT

1ee>kT - 122
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FIGURE 15.19
The seven degrees of freedom of a
diatomic molecule.
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FIGURE 15.18
Heat capacity and average energy 
of a two-level system.

The heat capacity is then

(15.38)

Notice the similarity between these expressions and the corresponding ex-
pressions (15.35) and (15.36) for a harmonic oscillator. (But notice that the
minus sign in the harmonic-oscillator formulas has been replaced by a plus
sign for the two-level system.) The heat capacity (15.38) is plotted in Fig. 15.18
along with the mean energy (15.37). Notice that the peak in the heat capacity

occurs where the slope of versus T is maximum.

Diatomic Gases

At the beginning of this section, we argued that the heat capacity of an ideal
monatomic gas is where the factor of came from the fact that each of
the three degrees of freedom (motion in the x, y, and z directions) of a gas
atom contributes to the energy. It may come as a surprise then to learn
that at room temperature the heat capacity of oxygen and nitrogen, the princi-
ple components of air, is not (When dealing with molecular gases,
N is the number of molecules in the gas, not the number of atoms.) The reason
is that molecules with two or more atoms have internal degrees of freedom.
Oxygen and nitrogen, as well as hydrogen, chlorine, and many other gases,
form diatomic molecules, and these multi-atom molecules can rotate and vi-
brate, as well as translate. Rotation contributes two degrees of freedom, since
a dumbbell-shaped diatomic molecule can rotate about two orthogonal axes
(Fig. 15.19). Vibration contributes two more degrees of freedom, radial kinetic
energy and elastic potential energy, similar to a simple 1-D mass on a spring.

So, in addition to the three translational degrees of freedom, we have
four internal degrees of freedom, for a total of seven degrees of freedom. The
corresponding seven quadratic terms in the energy are

(Can you identify each term and the meaning of each symbol?) With seven de-
grees of freedom, why then is the heat capacity not At sufficiently
high temperature, it is! The heat capacity of diatomic molecules is temperature-
dependent. Recall that a degree of freedom, which is often called a “mode,”

17>22Nk?

U = 1
2 mvx

2 + 1
2 mvy

2 + 1
2 mvz

2 + 1
2 Ivx

2 + 1
2 Ivy

2 + 1
2 m1dr>dt22 + 1

2 k1r - r022

3
2 Nk.5

2 Nk,

1
2 kT

3
2

3
2 Nk,

8E9C = d8E9>dT

C =
d8E9
dT

= k 

1e>kT22 ee>kT

11 + e+e>kT22
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FIGURE 15.20
Heat capacity of hydrogen, a
diatomic gas as a function of
temperature. The hydrogen
molecule dissociates at high
temperatures, before the
vibrational modes are fully excited.

fully contributes to the heat capacity only when where is the
energy-level spacing for the quantum levels associated with that mode. At very
low temperatures both the rotational and vibrational degrees of
freedom are frozen out, and the heat capacity is since only the center-of-
mass kinetic energy contributes to the heat capacity. We saw in Chapter 12 that
the energy-level spacing for the rotational modes of molecules are smaller than
the level spacing for the vibrational modes. At intermediate temperatures —
around room temperature — the two rotational degrees of freedom become
thermally activated, but the vibrational degrees are still frozen out, leading to a
heat capacity of At sufficiently high temperatures, is greater than the
quantum of excitation of the vibrational modes and all degrees of freedom con-
tribute to the heat capacity Fig. 15.20 shows the temperature dependence
of the heat capacity of hydrogen gas, which clearly exhibits these three regimes.
We leave it as exercises (Problems 15.61 and 15.62) to estimate the tempera-
tures at which the vibrational and rotational degrees of freedom are activated.

7
2 Nk.

kT5
2 Nk.

3
2 Nk,

1T f 100 K2
¢EkT W ¢E,

CHECKLIST FOR CHAPTER 15
CONCEPT DETAILS

Microstates and macrostates Complete specification of all microscopic variables versus
specification of statistical averages of a few macroscopic
variables. (Section 15.1)

Degrees of freedom Number of quadratic terms in detailed expression of total
energy. (Section 15.2)

Equipartition theorem The total energy of a classical system is shared equally
among its degrees of freedom. (Section 15.2)

Temperature Amount of atomic “jiggling.”
per degree of freedom in a classical

system (15.1)

Boltzmann relation: probability that a system is (15.3)
in a particular quantum state i

Probability that a system has an energy E (15.6)

Equal-probability hypothesis All accessible microstates are equally likely to occur.
(Section 15.4)

P1E2 = g1E2P1i2

P1state i2 =
e-Ei>kT

a  

j e-Ej>kT

1
2 kT = energy
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Counting microstates The probability of a situation

(Section 15.4)

Number of ways of choosing N indistinguishable (15.7)

objects from among T objects

Origin of the Boltzmann relation� For an isolated if the system is in a
state i with more energy, then the reservoir has less
energy and therefore fewer microstates. (Section 15.5)

Entropy and the second law� The entropy of a closed system cannot decrease. (Section 15.6)
thermodynamic definition of entropy (15.17)
statistical definition of entropy (15.18)

Quantum ideal gas Each one-particle state is specified by a point in k space.
(Section 15.7)

Density of states of ideal gas of states with energies between E and
(15.29)

Maxwell speed distribution that particle has speed between 
and (15.32)

Heat capacity (15.33)
Dulong–Petit law For a classical solid,

energy so (Section 15.9)
Einstein model of heat capacity When the excited modes of a quantum solid

are frozen out, leading to a vanishingly small heat
capacity. (Section 15.9)

diatomic gases In addition to translational modes, the rotational and
vibrational modes can contribute to the heat capacity.
(Section 15.9)

kT V ¢E,
C = dU>dT = 3NkU = 3NkT,

C = d8E9>dT

v + dv
vp1v2 dv = probabilityp1v2

D1E2 r 2EE + dE,
D1E2 dE = numberD1E2

S = k ln g
dS = dQ>T

1system + reservoir2,

g =
T!

1T - N2!N!

1number of ways that situation can occur2
1total number of possible situations2

=

PROBLEMS FOR CHAPTER 15

SECTION 15.1 (Introduction)

15.1 • Neon is a noble element and therefore forms a gas
of monotomic molecules at all but the lowest tem-
peratures. However, neon freezes and forms a crys-
talline solid at temperatures below Classi-
cally, how many degrees of freedom are in (a) a mole
of neon gas at room temperature? (b) A mole of
solid neon at 

SECTION 15.2 (Temperature)

15.2 • What is the temperature in kelvins that corresponds
to an energy of equal to (a) 0.001 eV (b) 0.1 eV
(c) 10 eV (d) 1000 eV?

15.3 • (a) What is the rms speed of a helium atom in a
sample of pure helium gas at room temperature

(b) How do you expect the speed of
sound in helium gas to compare with that in air at the
same temperature?

15.4 • Radon is a heavy inert gas, with atomic number
What is the rms speed of radon atoms in air

at room temperature Is the rms speed1T L 293 K2?Z = 86.

1T L 293 K2?

kT

T = 10 K?

T = 26 K.

of the atoms in pure radon gas greater than, less than,
or the same as that of radon atoms mixed in air?

15.5 • A water droplet in a cloud is typically 5 microns in
diameter What is the
rms speed of such a droplet at room temperature

15.6 • (a) What is the ratio of the kinetic energies of mol-
ecules to that of molecules in air at room tempera-
ture? (b) What is the ratio of the rms speed of 
molecules to that of molecules in air at room tem-
perature? (c) Are these ratios temperature-dependent?

15.7 •• (a) What is the total energy of a mole of heli-
um gas at room temperature, [Hint: This
is just where N is the number of atoms and

is the average kinetic energy per atom.](b) By
how many kelvins would this energy raise the tem-
perature of a cup of water (200 grams, say)?

15.8 •• (a) Write an expression for the total energy of
a mole of a monatomic gas at temperature T. (See
Problem 15.7.) (b) Use this to find the (constant-

Etot

8K9 N8K9, T L 293 K?
Etot

N2

O2

N2

O2

(T L 293 K)?

(1 micron = 1 mm = 10-6 m).
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volume) molar specific heat of the gas. This is the
energy needed to raise the temperature of 1 mol by
1 K, so is equal to 

15.9 ••• In his Feynman Lectures in Physics (Vol. 1),
Richard Feynman gives the following proof of the
equipartition theorem for the special case of mole-
cules in an ideal gas: Consider two molecules of mass-
es and with initial velocity vectors and 
prior to collision. The velocity of the center of mass

is defined by the equation 

The relative velocity w of molecules is defined as
One can argue that if the system is in

thermal equilibrium, the direction of the center-of-
mass motion is completely uncorrelated to the direc-
tion of the relative velocity, so that 
where the brackets represents an average over
all pairs of molecules. (Since the directions are ran-
dom, the dot-product is positive as often as negative
and it averages to zero.) Use this relation to argue that

SECTION 15.3 (The Boltzmann Factor)

15.10 • Consider the quantum-mechanical system consist-
ing of a particle of mass m in a one-dimensional rigid
box of length a, (often called an infinite square well),
as described in Section 7.4. Assume that the system is
in thermal equilibrium at temperature T. (a) Write an
expression for the ratio that is, the ratio
of the probability that the system is in the first excited
state to that in the ground state. (b) What is the ap-
proximate temperature below which the system is un-
likely to be found in any of its excited states?

15.11 • Consider a gas of hydrogen atoms at a temperature
T. At what temperature is the ratio of the number of
atoms in the first excited state to the number of
atoms in the ground state equal to that is, at
what temperature is [Don’t
forget that these states have degeneracies.]

15.12 •• Physical interpretation of the partition function.
Consider a single-particle quantum system whose
states are labeled with an index with
corresponding energies Set the zero
of energy at the ground-state energy so that 
Argue that if the absolute temperature T is such that

where n is some integer, then n is the ap-
proximate value of the partition function (15.4).
Therefore, the partition function is equal to the num-
ber of states that are likely to be occupied.

15.13 •• A pocket compass with a magnetized iron needle
is at rest in the earth’s magnetic field,
(a) Given that the mass of the needle is 0.2 grams, es-
timate its magnetic moment. Assume that each atom
in the needle has a magnetic moment of one Bohr
magneton and that the moments of all the atoms are
fully aligned. (b) Find the ratio of the probability
that the needle is pointing along the earth’s field to
that of its pointing in the opposite direction. [It is

B L 10-4 T.

kT = En ,

E1 = 0.
E3 , Á .E2 ,E1 ,

i = 1, 2, 3, Á

P1E22>P1E12 = 1>10?
1>10;

P1E22>P1E12,

1
2 m18v1

29 = 1
2 m28v2

29

8Á 9
8w # vcm9 = 0,

w = 1v1 - v22.

1m
 1 v1 + m

 2 v22.
1m1 + m22vcm =  vcm

v2 ,v1m2m1

dEtot>dT.

Cv legitimate to use the Boltzmann relation in this clas-
sical situation.]

15.14 •• Consider an electron in an external magnetic field
of 1.0 T, and recall that the energy of an electron in a
magnetic field is given by Eq. (9.18) as 
where (a) Make a plot of the ratio of the
probability that the electron’s moment is aligned with
the field (the low-energy state) to the probability that
it is anti-aligned (the high-energy state) versus the
absolute temperature T. (b) What is the ratio at room
temperature? (c) How low does the temperature
have to be in order for this ratio to be 2?

15.15 •• At what temperature would one be just as likely to
find a hydrogen atom in its first excited level as in its
ground level? [Don’t forget about degeneracies.]

15.16 •• As described in Section 7.9, a 1-D quantum-
mechanical harmonic oscillator has a particularly 
simple spectrum of energies: where 

1, is a constant, and all the states are
nondegenerate. (a) At temperature T, what is the
ratio that is, the ratio of the probability
that the system is in the ground state to the
probability that it is in the first excited state?
(b) Sketch the ratio as a function of the
parameter 

15.17 ••• Consider the 1-D harmonic oscillator of the pre-
vious problem. (a) Write down the partition function
(15.4) for this system and sum the infinite series. [Re-
member that ]
(b) Sketch the probabilities and as func-
tions of T.

15.18 ••• Consider a quantum system consisting of two
spin-half particles in a magnetic field B. This system
has four possible states, which we can indicate
schematically as (1) (2) (3) and (4) 
States 3 and 4 both have energy state 2 has en-
ergy and state 1 has energy where

(a) Write down an expression for the par-
tition function for this system. [Note that the 
state has a degeneracy of two.] (b) Write expressions
for the probabilities that the system is in each of the
three energy levels 0, as a function of
temperature. (c) Sketch these probabilities as a func-
tion of the parameter 

SECTION 15.4 (Counting Microstates: The Equal-
Probability Hypothesis)

15.19 • (a) What is the probability that in a deal of 2 cards
from a randomly shuffled deck you will get 2 hearts?
(b) What is the probability of turning up 2 hearts if
the first card is replaced and the deck shuffled before
the second card is turned?

15.20 • (a) What is the probability that in a roll of 5 dice you
will get 5 sixes? (b) What is it that you will get no sixes?

15.21 •• (a) What is the probability that, from a randomly
shuffled deck, you will be dealt a hand of 5 cards that
are all hearts. (b) What is the probability that you will
be dealt 4 kings and an ace in that order (4 kings fol-
lowed by an ace)?

kT>e.

-e,E = +e,

E = 0
e = 2 m

 B B.
E = -e,E = +e,

E = 0,
pq.qp,pp,qq,

P1E12P1E02
1 + x + x2 + x3 + Á = 1>11 - x2.

kT>Uv.
P1E02>P1E12

1n = 12
1n = 02

P1E02>P1E12,

v2, Á ,n = 0,
En = An + 1

2 BUv,

m = ;1>2.
E = mm

 B B,
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15.22•• A coin is flipped N times. The probability that
the coin will come up heads all N times is

(a) Show that this probability can 
also be written as [Hint: Note
that from which it follows that

] (b) For what
value of N does the probability of N heads in a row
fall below ( is about the probability of win-
ning a large state lottery.)

15.23 •• (a) What is the probability that, from a randomly
shuffled deck, you will be dealt the cards 

in that order? (b) What is the probabil-
ity that, from a randomly shuffled deck, you will be
dealt the same 5 cards in any order?

15.24 •• For very large numbers, the factorial of N can be 
estimated by Stirling’s approximation

(a) What is the fractional error in this approx-
imation for and (b) Stirling’s
approximation can also be written as 

Often, to simplify
calculations, a further approximation is made and the
formula is written as If 

how do the values of these two versions of
Stirling’s approximation compare? What percent
error is made in the computation of by using
the shorter, more approximate version compared to
the longer, more precise version (for and 60
again)? [See also Problem 15.63.]

15.25 •• Show that Eq. (15.11)

reduces to the simpler equation (15.8) 
in the limit [Hint: To compute the
factorial of large numbers, use Stirling’s approxima-
tion: Note also that if

then ]

15.26 ••• Consider N identical indistinguishable bosons in
a sealed container, and assume that the particles can
move freely between the left and right halves of the
container. As in Section 15.4, model the quantum
states of this system in the following simple manner:
Assume that there are H different single-particle
quantum states on the left half of the box, that is,
states with wave functions localized on the left, and
there are another H states on the right. Compute the
probability that all N bosons will be found in the left
half of the box. [Hint: See Problem 15.29.]

15.27 ••• Consider a room full of air molecules. Each mole-
cule can be considered to be in one of two states: in the
right half of the room or in the left half.The probability
of each of these states is If there are N distinguish-
able molecules in the room, then the total number of
ways of arranging the molecules is (a) Argue that
the number of ways of arranging the N distinguishable
molecules with molecules on the left is

PL =
N!

1N - NL2!NL!

NL

2N.

1>2.

ln1H - N2 L ln H.H W N,
ln N! L N ln N - N.

H W N W 1.
P1N2 = 1>2N

P1left side only2 =
H!
12H2! 

12H - N2!
1H - N2!

N = 25

ln1N!2
N = 1023,

ln1N!2 L N ln N - N.

1
2 ln12p2 + 1

2 ln N + N ln N - N.
ln1N!2 L

N = 60?N = 25
NN

 e-N.
N! L A22pN B

K♣)A♣,A♠,
A♥,(A♦,

10-810-8
 ?

ln x = ln310log x4 = 1log x21ln 102.x = eln x = 10log x,
P1N2 = 10-N ln 2>ln 10.

P1N2 = 1>2N.

(b) If there are 100 molecules in the room, what is the
ratio that is, how much more
likely is it that the molecules are evenly distributed
compared to having 60 on the left and 40 on the
right? (c) If there are molecules in the room,
what is the ratio To
compute the factorial of large numbers, use Stirling’s
approximation:

15.28 ••• Continuing with the situation in the previous
problem, the number of molecules in the right and left
halves of a room containing N molecules can be writ-
ten as 
For N large, we expect the number of molecules in the
two halves to be nearly equal so (a) Show that
the probability of a fractional discrepancy of more
molecules on the right than on the left is given by

where C is a constant that does not depend on 
[Hint: You will need to use Stirling’s approximation,

and the relation 
valid for Begin by writing 
and take the ln of both sides.] (b) For a room contain-
ing molecules, what is the ratio 

(c) What values of are likely to actually
occur in a room?

SECTION 15.5 (The Origin of the Boltzmann
Relation�)

15.29 •• Prove Eq. (15.14),

where is the number of ways of placing r indis-
tinguishable objects in N distinct boxes. A particular
arrangement of the objects among the boxes can be
represented schematically by a series of r dots sprin-
kled among lines, like so:

The figure above represents objects placed in
boxes. Note that the two lines on the far right

and far left must remain fixed on the outside posi-
tions, but the remaining lines and r dots can
occur in any order.

15.30 •• Show that Eq. (15.14),

is approximately equal to in the limit
[Hint: Use Stirling’s approximation:

You will need to make several
approximations along the way, including, for instance,

]

15.31 ••• Show that Eq. (15.16) can be
derived from Eq. (15.15),

P1s2 r gR1m - s2 =
3N + 1m - s2 - 14!
1m - s2!1N - 12!

P1s2 r e-s>1m>N2
ln1N + r - 12 L ln1r2.
ln N! L N ln N - N.
r W N W 1.

rN

g1r2 =
1N + r - 12!

r!1N - 12!

1N - 12
N = 6

r = 4

ƒ• ƒ  ƒ  ƒ  ƒ•• ƒ• ƒ
N + 1

g1r2
g1r2 =

1N + r - 12!
r!1N - 12!

¢P1¢ = 02? P1¢ = 0.0012>1025

P = N!>1NR!NL!2x V 1.
ln11 + x2 L x,ln N! L N ln N - N,

¢.

P1¢2 = Ce-¢2
 N

2¢
¢ V 1.

NL = 1N>2211 - ¢2.NR = 1N>2211 + ¢2,

ln N! L N ln N - N.

1PL = 0.5002>1PL = 0.5012?1025

1PL = 0.52>1PL = 0.62;
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in the limit of large N and and 
[Hint: Use Stirling’s approximation:

valid for large N. Also, note that, if
then ]

SECTION 15.6 (Entropy and the Second Law of
Thermodynamics�)

15.32 • Consider Example 15.6 in which a gas is allowed to
expand from a volume into a volume when a
barrier is broken. Using both of the methods given in
that example, find the change in entropy if the gas is
allowed to expand in this way from volume to 

15.33 •• An ideal gas of N spinless monatomic atoms is at
temperature T and volume V. What is the entropy in-
crease of the gas when the temperature is doubled at
constant volume? [Hint: Use a thermodynamic argu-
ment, not a statistical mechanical one, and remember
that for a monatomic ideal gas, the average energy
per atom is ]

15.34 •• A bar of ferromagnetic material consists of N atoms,
each with spin half. The spin of each atom can point in
one of two directions: up or down.When the bar is fully
magnetized, all the spins point in the same directions,
like so: it is completely demagnetized
when the spins are in random directions, like so:

(a) How many different ways g
can the N spins be arranged? (Note that these are N
distinguishable spins since they are on a fixed lattice.)
(b) What is the increase in entropy of the bar magnet
when it is taken from a fully magnetized state to a fully
demagnetized state? (c) Repeat part (b), but with a 
magnet made of spin atoms, which can exist in any 
one of four states 

15.35 ••• An ideal gas of N spinless monatomic atoms is at
a temperature T and volume V. (a) What is the en-
tropy increase of the gas when the volume of the gas
is doubled isothermally (at constant temperature)?
(b) What is the entropy change of the gas when the
volume of the gas is doubled reversibly (slow, steady
volume change) and adiabatically (no heat allowed
into or out of the gas)?

15.36 ••• Entropy of Mixing. Consider a box containing N
particles. A partition separates the right and left halves
of the box and there are particles to the right of
the partition and particles to the left. Suddenly, the
partition breaks allowing the particles on the right and
left to freely mix. If the particles are indistinguishable,
there is no change in the entropy of the system when
the partition breaks. However, if the particles are distin-
guishable (for instance, if the right and left halves con-
tain different isotopes of the same inert gas) then there
is an increase in entropy, called the entropy of mixing,
equal to Prove these statements.

In the nineteenth century, before the development
of quantum mechanics and the notion of indistin-
guishability, physicists thought that identical particles
were distinguishable and that there should therefore
be an increase in entropy when identical gases mix.
Experimentally, no such increase was observed and
this puzzling state of affairs was called Gibb’s paradox.

¢S = kN ln 2.

N>2 N>2

-3
2 .-  

1
2 ,1

2 ,3
2 ,

3
2

qqqppqpqpqpqppÁ.

qqqqqqqqÁ;

3
2 kT.

3V0 .V0

2V0V0

ln11 + x2 L x.x V 1,
ln N - N,

ln N! L N
m W s.m W N W 1 SECTION 15.7 (The Quantum Ideal Gas — 

A Many-Particle System)

15.37 • Use the technique of separation of variables to ver-
ify that the wave functions (15.22) with energies
(15.23) are solutions of the Schrödinger Eq. (15.20).

15.38 •• As in Fig. 15.10(b), the ground state of a gas of fermi-
ons consists of one-eighth of a sphere of states in k
space, with all states filled up to a maximum energy,
called the Fermi energy. (a) For a gas of N nonin-
teracting fermions in a container of volume de-
rive an expression for the Fermi energy. (b) Compute
the approximate value of the Fermi energy in eV for the
case of an electron gas in a metal. Assume one conduc-
tion electron per atom, and a lattice constant (distance
between nearest-neighbor atoms) of 0.3 nm.

15.39 •• Show that for a degenerate gas of fermions at
the average energy per particle and the Fermi

energy (the energy of the highest occupied states)
are related by [Hint: Avoid writing
any messy constants in your calculation, by noting
that we can write

where and C is a constant that you
don’t need to know because it cancels.]

15.40 ••• Consider a quantum ideal gas of N spinless parti-
cles in a container of volume If the tempera-
ture is sufficiently high and the density is sufficiently
low, the gas is in the classical nondegenerate regime,
in which the probability that any particular point in k
space is occupied is much less than one, correspond-
ing to Fig. 15.12(a). In this high-temperature, low-
density limit, the properties of the gas are the same
regardless of whether the particles of the gas are
fermions or bosons. (a) Show that this classical
regime occurs when the number density (number per 
volume) n obeys where m is
the mass of a gas molecule. [Hint: From the equiparti-
tion theorem, the average kinetic energy of a single
particle is and so a typical value of for a 
particle is given roughly by Also,
recall that the density of points in k space is 1 point
per ] (b) For a gas of helium atoms at atmos-
pheric pressure, below what temperature (roughly)
does the gas become degenerate? (c) For a conduc-
tion electron gas in a metal, how high a temperature
would be necessary for the electrons to be in the clas-
sical regime? Is such a temperature possible? Assume
1 conduction electron per atom, and a volume per 
atom of about 

SECTION 15.8 (Energy and Speed Distributions in
an Ideal Gas)

15.41 • (a) In an ideal monatomic gas at temperature T,
what is the ratio of the probabilities that a particle
has speeds and that is, what is p12v2>p1v2?v,2v

10.3 nm23.

1p>a23.
U2

 k2>2m L 3
2 k

 B T.
k = ƒk ƒ3

2 k
 B T,

n V 13kTm23>2>6p2
 U3,

V = a3.

p1E2 = C2E

8E9 = L
E

F

0
 p1E2E dE

L
E

F

0
 p1E2 dE

8E9 = 13>52EF.
EF

T = 0,

V = a3,
spin-1

2
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(b) For a gas of helium atoms at what is
this ratio when is the rms speed 

15.42 •• Protons on the surface of the sun can be consid-
ered to be a gas of noninteracting particles.
(a) Calculate the escape speed from the surface of the 
sun.
(b) Assume that the protons at the sun’s surface are
in thermal equilibrium at Argue that
none of the protons on the surface of the sun has a
speed greater than the escape speed. (See, however,
Problem 15.67.)

15.43 •• Eq. (15.29) is the distribution of single-particle en-
ergies in a three-dimensional ideal gas. Derive the
corresponding expression for the case of a two-
dimensional ideal gas. [Hint: Instead of considering a
shell of states in 3-D k space, consider a ring of states
in 2-D k space.] (A physical example of a 2-D gas is
the electron gas that forms at the interface between
doped GaAs layers in some semiconductor devices.)

15.44 •• (a) At what value of the molecular speed does
the Maxwell–Boltzmann distribution of speeds have
it maximum? (b) Show that this most probable speed
corresponds to a kinetic energy kT.

15.45•• In an ideal gas, at a given instant in time, rough-
ly what fraction of the molecules have average ki-
netic energies [Hint: If 
then ]

15.46 •• The standard deviation of a random variable x is 
defined as Note that this is a
measure of the “spread” of values of x about the
mean value. (a) Show that the standard deviation can 
also be written as (b) What is
the standard deviation of the distribution of
speeds of an atom in an ideal monatomic gas at tem-
perature T? (c) What is the ratio 

15.47 •• Prove that for the particles of an ideal monatomic

gas, where is the

energy distribution given by (15.31).

15.48 •• Prove that for an ideal gas,

where is the Maxwell speed distri-
bution given by (15.32).

15.49 •• Derive expressions for and in an ideal
gas, where is the speed of the molecules. (The
equipartition theorem and probability distribution

given by (15.32) will be useful here.) Which
expression is larger, and why?

SECTION 15.9 (Heat Capacities)

15.50 • (a) How much energy is required to raise the tem-
perature of a mole of an ideal monatomic gas by 1°C at
constant volume? Give your answer in both J/mol and

p1v2
v

8v298v92

p1v228kT>1pm2 ,
8v9 = L

q

0
 vp1v2 dv =  

p1E28E9 = L
q

0
 Ep1E2 dE =

3
2

 kT,

¢v>vrms  ?

¢v
¢x = 48x29 - 8x92 .

¢x = 481x - 8x9229 .

e-E>kT L 1.
E V kT,KE 6 0.1 kT?

v

T = 6000 K.

Rsun = 6.96 * 108 m2.1Msun = 1.99 * 1030 kg,

23kT>m  ?v
T = 300 K, eV/atom. (b) How much energy is required to raise the

temperature of 1 kg of aluminum by 1°C at room tem-
perature (where the Dulong–Petit law applies)?

15.51 •• Prove the two identities in (15.34):

and

15.52 •• Show that the average energy of a system can be
written as where and
Z is the partition function 

15.53 •• Show that the heat capacity of a system can be
written as where Z is the
partition function [Hint: Use the 
results of Problem 15.52.

15.54 •• Consider a three-level quantum system, with non-
degenerate energy levels 0, and (A physical
example of such a system is a spin magnetic
moment in a magnetic field.) (a) Write down the par-
tition function Z for this system. (b) Write down the
expression for the thermal average energy of this
system. (c) Show that in the low-temperature limit

the energy and specific heat of this system
are identical to those of a two-level system. (d) Show
that in the high-temperature limit the heat
capacity of this system, like that of a two-level system,
approaches zero.

15.55 •• The argument leading to the Dulong–Petit law
treats the lattice vibrations classically, that is, the
spectrum of energies is assumed to be continuous.
This would be expected to break down once the ther-
mal energy is comparable to, or less than, the
quantized level spacing of the lattice vi-
brations. Given that the latter is of order 0.03 eV, esti-
mate the temperature below which the Dulong–Petit
law should fail. Compare your answer with Fig. 15.17.

15.56 •• The Dulong–Petit law predicts that the molar spe-
cific heats (that is, the heat capacity per mole) of ele-
mental solids should all have the same value,
On the other hand, the ordinary specific heats c, de-
fined as the energy per degree per mass, can be quite
different. (a) Prove that the specific heats, c, of elemen-
tal solids obeying the Dulong–Petit law are inversely
proportional to the atomic masses. (b) Given the fol-
lowing data, check the accuracy of this prediction.

Solid: Aluminum Silver Gold

0.214 0.0558 0.0312

15.57 •• (a) Assuming their molar specific heats are given
by the Dulong–Petit law, predict the specific heats, in

of Al,Ag, and Au. (b) Find the percent dis-
crepancies between your predictions and the mea-
sured values given in Problem 15.56.

cal>(g # K),

c3cal>1g # K24:

C = 3R.

¢E = Uvc

1'k
 B T2

kT W e,

kT V e,

8E9

S = 1
+2e.+e,

Z = a  

i g
 i e-bEi.

C = Td21kT ln Z2>dT2,

Z = a  

i g
 i e-bEi.
b = 1>kT8E9 = -d1ln Z2>db,

1

11 - x22 = 1 + 2x + 3x2 + Á

1
11 - x2 = 1 + x + x2 + x3 + Á

TAYL15-495-532.I  2/10/03  3:27 PM  Page 531



532 Chapter 15 • Statistical Mechanics

15.58 •• Compare the measured specific heat of ice
[ at temperatures somewhat
below freezing] with that expected from the Dulong–
Petit law. From this comparison, can you estimate
how many internal degrees of freedom of the ice
molecule are contributing to the heat capacity?

15.59 •• Consider a dilute gas of N noninteracting atoms, in
which the atoms have a nondegenerate ground state
with energy and a first excited level that has
an energy and degeneracy g. Assume that the
second excited state has an energy very high com-
pared with the thermal energy; that is, assume

so that the level and all higher levels
can be ignored. (a) At temperature T, what is the
ratio of the number of atoms in the first excited level
(degeneracy g) to the number in the ground state?
(b) What is the average energy of an atom in this gas?
(c) What is the total energy of the gas? (d) What is the
specific heat of the gas?

15.60 ••• Consider a simple solid, such as aluminum, con-
sisting of N identical atoms. Assume that the Einstein
approximation correctly describes the vibrational mo-
tion of the atom. (a) Assume that the vibrational level
spacing has the value (a typical value in
a solid). Consider the probability that an atom of the
solid is in its ground state. At what temperature is this
probability equal to 0.1? (b) For a given N and at
what temperatures is the average number of atoms in
the ground state less than one? That is, how high does
the temperature have to be to ensure that all atoms
are in an excited state? Is this temperature achievable
in an ordinary sample of a solid?

15.61 •• Make an order-of-magnitude estimate of the tem-
perature at which the internal vibrational mode of a
nitrogen molecule becomes appreciably excited.
Recall that the energy of the first excited state of a 
simple harmonic oscillator is where 
is the classical angular frequency, k is the spring con-
stant, and m is the mass. Recall also that the energy of 
the oscillator can be written as 
Finally, note that we can expect a typical chemical
bond energy when x is a typical atomic
distance The moral of this question is
that the vibrational modes of air molecules are largely
“frozen out” at room temperature.

15.62 •• Make an order-of-magnitude estimate of the tem-
perature at which the rotational modes of a nitrogen
molecule become excited. Recall that the kinetic 
energy of a rotating system is 
where is the moment of inertia and

is the angular momentum. Recall that for a
quantum system, the first excited state has 
Based on your answer, would you expect the rota-
tional modes of air molecules to contribute to the
heat capacity of air at room temperature?

L2 L U2.
L = Iv

I = a  

 

 m
 i ri

2
U = 1

2 Iv2 = 1
2 L2>I,

x L 0.1 nm.
U1x2 ' 3 eV

U = 1
2 kx2 = 1

2 mv2
 x2.

v = 2k>mUv,

e,

e = 0.037 eV

E2kT V E2 ,

E1 = e
E0 = 0

cice = 0.49 cal>(g # K) COMPUTER PROBLEMS

15.63 •• (Section 15.4) For very large numbers, the factori-
al of N can be estimated by Stirling’s approximation

which can also be written as 
Often, to sim-

plify calculations, a further approximation is made
and the formula is written as 
(a) Plot versus N for and on
this same plot, graph the long version of Stirling’s ap-
proximation. (b) Make a graph showing how the long
and short versions of Stirling’s approximation com-
pare over the range of 10 to 100. Consider carefully
what plot will show this comparison to best effect.

15.64 •• (Section 15.8) Reproduce Figure 15.14, the distrib-
ution of single-particle energies in an ideal gas, for the
case of helium gas at room temperature.

15.65 •• (Section 15.8) Reproduce Figure 15.15, showing
the Maxwell speed distributions, for the cases of 
and He gases at room temperature.

15.66 •• (Section 15.8) The temperature of the uppermost
reaches of the earth’s atmosphere, called the ther-
mosphere, is approximately 600 K during the day (the
high temperature is due to efficient absorption of
solar radiation). (a) At 600 K, what fraction of hydro-
gen molecules have thermal speeds greater the earth’s
escape velocity? (b) What fraction of the hydrogen
molecules have speeds greater than the escape veloc-
ity at room temperature, about 300 K? [Hint: You
need the computer to do the required integration.]

15.67 •• (Section 15.8) The outer atmosphere of the sun,
called the corona, consists mostly of protons and ex-
tends out to distances of two to three times the
radius of the sun. The temperature of the corona is
extraordinarily high, approximately 1 million de-
grees Kelvin (the cause of this high temperature is
still not well understood). (a) Compute the approxi-
mate escape speed for particles in the outer corona.

(b)
Approximately what fraction of the protons in the
outer corona have a thermal speed greater than the
escape speed? [Protons escaping from the corona
cause the “solar wind.”]

15.68 •• (a) (Section 15.9) Plot the Einstein specific heat of
a solid as a function of temperature and thus repro-
duce Figure 15.17. Assume that the vibrational level
spacing has the value (a typical value in
a solid). (b) Using the value at what
temperature is the heat capacity of the solid given by
0.9 times the Dulong–Petit value?

15.69 •• (Section 15.9) Reproduce Figure 15.18, showing
the average energy and heat capacity, for the case of
a three-level system with nondegenerate energy
levels 0, and +2e.+e,

e = 0.037 eV,
e = 0.037 eV

Rsun = 6.96 * 108 m21Msun = 1.99 * 1030 kg,

N2

2, Á 10,N = 1,ln1N!2 ln1N!2 L N ln N - N.

ln1N!2 L 1
2 ln12pN2 + N ln N - N.

N! L A22pN BNN
 e-N,
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