1. Evaluate the following integrals:
(a) $\int x^{3} \cos (5 x) d x$
(b) $\int x^{2} \sin \left(2 x^{3}\right) d x$
(c) $\int \frac{x^{2}}{x^{2}+1} d x$
(d) $\int \frac{4-2 x}{\left(x^{2}+1\right)(x-1)^{2}} d x$
(e) $\int \frac{5 x}{3 x-1} d x$

Hint: For (a)-(b) you must decide to use integration-by-parts or substitution. The fraction in (c) can be simplified by division of polynomials. The fraction in (d) can be made into a simpler sum by partial fractions. For (e) consider a substitution.
2. Assuming that $s \in \mathbb{R}$ evaluate the following improper integrals:
(a) $\int_{0}^{\infty} x^{3} e^{\beta t} e^{-s x} d t$, where $\beta \in \mathbb{R}$ and $s>\beta$.
(b) $\int_{0}^{\infty} e^{-s t} \cos (\omega t) d t$, where $\omega \in \mathbb{R}$ and $s>0$.
(c) $\int_{0}^{\infty} e^{-s t} \sin (\omega t) d t$, where $\omega \in \mathbb{R}$ and $s>0$.

Hint: For (b),(c), perform two steps of integration-by-parts and watch for the original integral to reappear.
3. Solve the following equations for the variable x :
(a) $\ln (x)-\ln (x-4)=-13$
(b) $\ln (x)+\ln (x-4)=-13$
(c) $e^{2\left(\ln (x)-\ln \left(x^{2}\right)\right)}=1$
4. Find all points (x, y), which solve the following simultaneous systems:
(a) $\begin{aligned} 4 x-7 y-1 & =0 \\ 3 x+6 y-1 & =0\end{aligned}$
(b) $\begin{array}{cl}2 x-\frac{2 x^{2}}{3}-x y & =0 \\ 4 x y-16 y & =0\end{array}$
(c) $\begin{aligned} & y x^{2}+y^{3}-y=0 \\ & x-x^{3}-x y^{2}=0\end{aligned}$
5. Consider the first order linear homogenous ordinary differential equation(ODE), $\frac{d y}{d t}=(1+t) y$. We can think of ODEs as equations which define the slope of the solution $y(t)$ for a given point (t, y).
(a) Using HPGSolver plot the vector field associated with the ODE.
(b) Using HPGSolver plot solution curves passing through the points

$$
\left(t_{0}, y_{0}\right)=\left\{(-1,2),(-1,-2),(-1,0),\left(-\frac{1}{2}, 3\right),\left(-\frac{1}{2},-3\right),(-2,2),(-2,-2),(1,1),(-1,1)\right\} .
$$

(c) Verify that $y(t)=C e^{\frac{1}{2} t^{2}+t}$ satisfies the ODE regardless of the choice of the constant C.

