E. Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ ed. Section N/A, pgs. N/A

Lecture: Basics of Matrices and Their Algebra
Suggested Problem Set: \{NULL\}
Module: 01
January 12, 2010
Quote of Lecture Notes One

Bertrand: Everything is vague to a degree you do not realize till you have tried to make it precise.

Bertrand Russell : The Philosophy of Logical Atomism (1918)

Basic Definitions

Definition: Matrix - A matrix is a set of elements organized by two indices into a rectangular array. In the case that these objects exist in the set of complex numbers we write $\mathbf{A} \in \mathbb{C}^{m \times n}$, where $n, m \in \mathbb{N} .^{1}$ At the element level we have that:
$\mathbf{A}=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\ a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}\end{array}\right]$, where $[\mathbf{A}]_{i j}=a_{i j}, a_{i j} \in \mathbb{C}$, for $i=1,2,3, \cdots, m$ and $j=1,2,3, \cdots, n$.

- In the case that $n=m$ we call the matrix square. Otherwise it is called rectangular.
- For a square matrix the entries running from the upper left to the lower right are called the main diagonal entries.

Definition: Vector - A column vector, or just vector, is matrix of size, $n \times 1$ where $n \in \mathbb{N}$. A row vector is matrix of size, $1 \times n$ where $n \in \mathbb{N}$. At the element level we have that:

$$
\begin{gather*}
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n}
\end{array}\right], \text { where } v_{i} \in \mathbb{C}, \text { for } i=1,2,3, \cdots n . \tag{2}\\
\mathbf{r}=\left[\begin{array}{lllll}
r_{1} & r_{2} & r_{3} & \ldots & r_{n}
\end{array}\right], \text { where } r_{j} \in \mathbb{C}, \text { for } j=1,2,3, \cdots n \tag{3}
\end{gather*}
$$

Definition: Scalar - A scalar is a matrix whose size is 1×1. In this case that this scalar is an object from the real numbers we write $a \in \mathbb{R}$.
Definition: Equality of Matrices - Two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$ are said to be equal if and only if $a_{i j}=b_{i j}$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$.

[^0]
Unitary Operations

Definition: Transposition - Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the transpose of \mathbf{A} to be the matrix $\mathbf{A}^{\mathrm{T}} \in \mathbb{R}^{n \times m}$, such that:

$$
\mathbf{A}^{\mathrm{T}}=\left[\begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & \ldots & a_{m 1} \tag{4}\\
a_{12} & a_{22} & a_{32} & \ldots & a_{m 2} \\
a_{13} & a_{23} & a_{33} & \ldots & a_{m 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & a_{3 n} & \ldots & a_{m n}
\end{array}\right]
$$

- If \mathbf{A} is such that $\mathbf{A}=\mathbf{A}^{\mathrm{T}}$ then the matrix \mathbf{A} is called symmetric. ${ }^{2}$
- If \mathbf{A} is such that $\mathbf{A}^{\mathrm{T}}=-\mathbf{A}$ then the matrix \mathbf{A} is called skew-symmetric. ${ }^{3}$
- Using the previous definitions one can quickly show that $(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}$ assuming that the matrices are such that their addition is well-defined. ${ }^{4}$

Definition: Conjugation-Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, define the conjugate of \mathbf{A} to be the matrix $\overline{\mathbf{A}} \in \mathbb{C}^{m \times n}$ such that,

$$
\overline{\mathbf{A}}=\left[\begin{array}{ccccc}
\bar{a}_{11} & \bar{a}_{12} & \bar{a}_{13} & \ldots & \bar{a}_{1 n} \tag{5}\\
\bar{a}_{21} & \bar{a}_{22} & \bar{a}_{23} & \ldots & \bar{a}_{2 n} \\
\bar{a}_{31} & \bar{a}_{32} & \bar{a}_{33} & \ldots & \bar{a}_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bar{a}_{m 1} & \bar{a}_{m 2} & \bar{a}_{m 3} & \ldots & \bar{a}_{m n}
\end{array}\right]
$$

- The bar implies complex conjugation. That is if $c \in \mathbb{C}$ then $c=a+b i, a, b \in \mathbb{R}$ and $\bar{c}=a-b i$.

Definition: Adjoint - Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, define the adjoint or Hermitian of \mathbf{A} to be the matrix $\mathbf{A}^{\mathrm{H}} \in \mathbb{C}^{m \times n}$ such that $\mathbf{A}^{\mathrm{H}}=(\overline{\mathbf{A}})^{\mathrm{T}}=\overline{\left(\mathbf{A}^{\mathrm{T}}\right)} .{ }^{5}$

- The adjoint is considered as an extension of the transpose to matrices with complex numbers. Sometimes the adjoint is called the Hermitian of a matrix.
- A matrix is called self-adjoint if $\mathbf{A}^{\mathrm{H}}=\mathbf{A} .^{6}$
- A matrix is called skew-adjoint if $\mathbf{A}^{\mathrm{H}}=-\mathbf{A} .{ }^{7}$

Binary Operations

Definition: Addition and Scalar Multiplication of Matrices - Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$ then $\mathbf{A}+\mathbf{B}=\mathbf{C}$ is defined such that $\mathbf{C} \in \mathbb{C}^{n \times m}$ where $c_{i j}=a_{i j}+b_{i j}$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. Also, let $s \in \mathbb{C}$ then $s \mathbf{A}=\mathbf{C}$ where $c_{i j}=s \cdot a_{i j}$ for $i=1,2,3, \ldots, m$ and $j=1,2,3, \ldots, n$. From these definitions we have the general properties for addition and scalar multiplication of matrices:

1. $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
2. $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
3. $\mathbf{A}+\mathbf{0}=\mathbf{A}$

[^1]4. $\mathbf{A}+-1 \cdot \mathbf{A}=\mathbf{0}$ where $\mathbf{0}$ denotes an $m \times n$ matrix whose elements are the scalar zero.
5. $r(\mathbf{A}+\mathbf{B})=r \mathbf{A}+r \mathbf{B}$
6. $(r+s) \mathbf{A}=r \mathbf{A}+s \mathbf{A}$
7. $r(s \mathbf{A})=(r s) \mathbf{A}$
8. $1 \cdot \mathbf{A}=\mathbf{A}$
where $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{C}^{m \times n}$ and $r, s \in \mathbb{C}$
Definition: Matrix Product - Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ and $\mathbf{B} \in \mathbb{C}^{p \times q}$. If $n=p$ then $\mathbf{A B}=\mathbf{C}$ is defined such that $\mathbf{C} \in \mathbb{C}^{m \times q}$ where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. The general properties for matrix products are:

1. $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
2. $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
3. $(\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A}$
4. $r(\mathbf{A B})=r(\mathbf{A}) \mathbf{B}=\mathbf{A} r \mathbf{B}$
5. $\mathbf{I}_{m} \mathbf{A}=\mathbf{A}=\mathbf{A} \mathbf{I}_{n}$
where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are defined appropriately and $r \in \mathbb{R}$

- It is not necessarily the case that $\mathbf{A B}=\mathbf{B A}$. That is, matrix multiplication does not, in general, commute.
- The identity matrix \mathbf{I}_{k} is a square matrix with the scalar identity, i.e. the number one, on the main diagonal. That is $\left[\mathbf{I}_{k \times k}\right]_{i j}=1$ if $i=j$ and $\left[\mathbf{I}_{k \times k}\right]_{i j}=0$ if $i \neq j$.
- The inverse matrix of a square matrix \mathbf{A} is the square matrix \mathbf{A}^{-1} such that $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=$ I.

Definition: Inner Product - Given $\mathbf{x} \in \mathbb{R}^{n \times 1}$ and $\mathbf{y} \in \mathbb{R}^{n \times 1}$ define the inner product of \mathbf{x} and \mathbf{y} to be:

$$
\begin{equation*}
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\mathrm{T}} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i} \tag{6}
\end{equation*}
$$

- Using the inner product it is possible to define matrix multiplication as $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\mathbf{a}_{i} \cdot \mathbf{b}_{j}$ where \mathbf{a}_{i} is the $\mathrm{i}^{\text {th }}$ row of \mathbf{A} and \mathbf{b}_{j} is the $\mathrm{j}^{\text {th }}$ column of \mathbf{B}.
- When working with complex vectors then it is typical to define the inner product to be $\mathbf{x}^{\mathrm{H}} \mathbf{y}$. It is rare to multiply matrices with this definition.

Definition: Outer Product - Given $\mathbf{x} \in \mathbb{R}^{n \times 1}$ and $\mathbf{y} \in \mathbb{R}^{n \times 1}$ define the outer product of \mathbf{x} and \mathbf{y} to be $\mathbf{x y}^{\mathrm{T}}$. It is easily verified that this product results in an $n \times n$ matrix.

- If we take on faith that $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$ then we can also see that the outer product produces a symmetric matrix. ${ }^{8}$
- When working with complex vectors then it is typical to define the outer product to be $\mathbf{x y}^{\mathrm{H}}$.

[^2]
[^0]: ${ }^{1}$ Often it is useful to consider elements, which are functions. However, it is traditional and straightforward to first consider matrices of numbers.

[^1]: ${ }^{2}$ It can be shown that the eigenvalues of symmetric matrices are always real numbers.
 ${ }^{3}$ It can be shown that the eigenvalues of skew-symmetric matrices are always imaginary numbers or the number zero.
 ${ }^{4}$ From this it follows that a matrix can always be written as the sum of a symmetric and skew-symmetric matrix. To show this note that $\left.\mathbf{A}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\right)+\overline{\frac{1}{2}(\mathbf{A}}-\mathbf{A}^{\mathrm{T}}\right)$.
 ${ }^{5}$ It is often the case that the Hermitian is denoted \mathbf{A}^{\dagger}.
 ${ }^{6}$ It can be shown that the eigenvalues of self-adjoint matrices are always real numbers.
 ${ }^{7}$ It can be shown that the eigenvalues of skew-adjoint matrices are always imaginary numbers or the number zero.

[^2]: ${ }^{8}$ To prove the aforementioned equality note that $[\mathbf{A B}]_{i j}=\mathbf{a}_{i} \cdot \mathbf{b}_{j}$ thus the i, j-element of the transpose of $\mathbf{A B}$ is $\mathbf{a}_{j} \cdot \mathbf{b}_{i}$, which is the product of the $j^{t h}$-row of \mathbf{A} and $i^{t h}$-column of \mathbf{B}. Since the $i^{t h}$-column of \mathbf{B} is the $i^{t h}$-row of \mathbf{B}^{T} and the $j^{\text {th }}$-row of \mathbf{A} is the $j^{\text {th }}$-column of \mathbf{A}^{T} the desired equality follows.

