
2 mirror stability and the stability map 
•  Cavity is stable if  −1< 2g1g2 −1<1−1< A + D

2
<1

0 ≤ g1g2 ≤1

2nd and 4th quadrants:  
Negative branch: g1 g2 < 0 

One center of curvature 
inside resonator 

focal point inside resonator 

1st and 3rd quadrants:  
Positive branch: 

0 < g1 g2 < 1 stable  
g1 g2 > 1 unstable 

No focal point inside resonator 

g1 = 1−
L
R1

g2 = 1−
L
R2

Stable in shaded regions  
Unstable in white regions 



Unstable resonators 
Unstable resonators often use beam magnification to output couple past 
a mirror.  
•  Gain must be sufficient to overcome diffractive losses.  

Telescope magnification: 

Output coupling loss per 
round trip: 
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Negative branch unstable resonators 

Aperture at intermediate focus 
- Acts as an internal spatial filter 

“scraper mirror” output  

Polarization-coupled output 



Self-filtering unstable resonator 

•  Confocal resonator with magnification 
Gobbi, Opt Commun 52, 195 (1984) 

f1 f2 
sequence:  
1.  Collimated beam from 

M2 toward PH 
2.  PH clips beam, reduces 

energy by ratio f2/f1 
3.  Airy diffraction pattern 

imaged to PH by M1 

4.  PH radius at first zero: 
passes 84% of power 

5.  M2 recollimates beam 
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r first zero at r = 1.22 f1λ / 2a

For M=3, round trip 
transmission ~ 30% 
Use with high gain 



Zig-zag slab resonator 



Generalized ABCD 
•  Examples:  

–  Variable output coupling mirrors 
–  Radially-dependent gain 
–  Parabolic refractive index profiles 
–  Parabolic gain profiles – gain guiding  

•  ABCD with gain and loss lead to complex terms 
–  Qualitative change to stability 
–  Need additional modeling to calculate net gain and loss 

 (ABCD is for beam shape, not amplitude) 



Variable reflectivity mirror 
•  Gaussian mirror: graded reflectivity dielectric 

coating 
–  Beam curvature unaffected 
–  Beam size is reduced: 
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Compare to gaussian beam ABCD 

Gaussian mirror lens 

Acts like a lens with imaginary focal length! 



Spatial gain narrowing 
•  Assume longitudinal pumping with Gaussian beam 
•  Even though gain adds to pulse energy, effect is 

similar to the Gaussian mirror 
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G0 is peak gain on axis 
Expand exp[ ] in exponent, keeping parabolic term 

ABCD only keeps track of beam width and 
radius of curvature – not loss or gain 
 
Both versions enforce “stability” 
Need to be careful about results of trace.  



Gradient index profiles 
•  Laser rod has extended interaction with beam 

–  Thermal lensing and gain affect beam propagation 

•  Ideal lens changes wavefront curvature 

–  Can accomplish the same effect with a gradient index 
medium, e.g. 

–  For a thin medium:  
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GRIN lens: diffuse ions into lens material 
Thermal profiles: n[ T(r) ] 



The mirage effect 
•  Model index gradient as a sequence of layers 

n0 

n1 

n2 

n3 

Find condition for turning point 

θ0 



The lens waveguide 
•  A sequence of positive lenses can act as a 

waveguide 
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Ray equation for parabolic gradient 
•  Parabolic index gradient:  
•  Ray equation: 
 
•  height and angle oscillate: compare to SHO 

d 2r
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Note that the period of oscillation is 
Can put this into ABCD form:  
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Gaussian beam solution 
•  Can use exact same ABCD matrix 

–  Apply Gaussian ABCD rule: 

–  Example: input beam waist, w0 
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kosc
sin koscz( )

−q0kosc sin koscz( ) + cos koscz( )q1 =
Aq0 + B
Cq0 + D

q0 = −i λ
πw0

2

20 40 60 80 100

10

20

30

40

50

20 40 60 80 100

10

20

30

40

50

60w(z) 

Large input beam: initial focusing 
Small input beam: 
 initial beam divergence 



Gradient index waveguide 
•  Optical fibers: can be made with a gradient index 

–  Is there a stable mode size?  

 
–  Solve for guided mode: 
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Guiding condition: wave perspective 
•  w/o guiding, the beam will naturally develop 

diverging wavefront curvature 

•  Parabolic waveguide pulls central wavefront back, 
inducing focusing wavefront curvature 

•  If focusing balances diffraction: stable mode   



Example: plasma waveguide for intense pulses 

•  Line focus in gas, ionization, radial expansion w/
shock wave 



Generalizations for gradient index ABCD 
•  If k2 < 0, refractive index parabola is inverted: 

cos[ ] to cosh[ ] 
–  Beam defocuses 

•  Gain guiding: 
–  Gain and loss are 
   represented as complex index 
 
 
-  Diffractive loss is compensated by gain along axis 
-  Guided mode has convex wavefronts 
-  Gain guiding leads to a breaking of rule: wavefront will 

not generally match end mirrors! 
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For         convention, gain for  e− ikz α 2 < 0


