1. Find the largest natural number m such that $n^{3}-n$ is divisible by m for all $n \in \mathbb{N}$. Prove your assertion.
2. Let the numbers x_{n} be defined as follows:

$$
x_{1}:=1, x_{2}:=2, \text { and } x_{n+2}:=\frac{1}{2}\left(x_{n+1}+x_{n}\right) \text { for all } n \in \mathbb{N} .
$$

Using induction, show that $1 \leq x_{n} \leq 2$ for all $n \in \mathbb{N}$.
6.3.21 Let C be the set of all real functions that are continuous on the closed interval $[0,1]$. Define the function $A: C \rightarrow \mathbb{R}$ as follows:

$$
\text { For each } f \in C, A(f)=\int_{0}^{1} f(x) d x
$$

Is the function A an injection? Is it a surjection? Justify your conclusions.
6.3.22 Let $A=\{(m, n) \mid m \in \mathbb{Z}, n \in \mathbb{Z}$, and $n \neq 0\}$. Define the function $f: A \rightarrow \mathbb{Q}$ as follows:

$$
\text { For each }(m, n) \in A, f(m, n)=\frac{m+n}{m}
$$

Is the function f an injection? Is it a surjection? Justify your conclusions.
6.6.5 In addition to considering how a function acts on elements of a given set, we can also discuss how the function acts on subsets of the domain or codomain. For example, let $f: S \rightarrow T$ and let $A \subseteq S$. Then we can define

$$
f(A)=\{f(x) \mid x \in A\}
$$

In this case, $f(A)$ is referred to as the image of A under f.
Prove: $f(A \cup B)=f(A) \cup f(B)$.

