
Solutions

3.1, 12. Determine if each of the following statements is true or false. Pro-
vide a counterexample for statements that are false and provide a
complete proof for those that are true.

a. For all real numbers x and y,
√

xy ≤ x + y

2
.

The proposition is false. As a counterexample consider x = −2
and y = −2. Then we have√

(−2)(−2) =
√

4 = 2 >
(−2) + (−2)

2
= −2

b. For all real numbers x and y, xy ≤
(

x + y

2

)2

.

Proof. Let x, y ∈ R and consider

0 ≤ (x− y)2 = (x2 − 2xy + y2)

⇒ 4xy ≤ (x2 + 2xy + y2) = (x + y)2

⇒ xy ≤
(

x + y

2

)2

c. For all nonnegative real numbers x and y,
√

xy ≤ x + y

2
.

Proof. Let x, y ∈ R+ and note that

x ≤ y ⇒ x−y ≤ 0⇒ (x+y)(x−y) ≤ 0⇒ x2−y2 ≤ 0⇒ x2 ≤ y2

Then
√

xy ≤ x + y

2
⇒ xy ≤

(
x + y

2

)2

The remainder of the proof follows from part (b) above
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3.1, 13. Use one of the true inequalities in Exercise (12) to prove the fol-
lowing proposition.

Proposition 1. For each real number a, the value of x that gives the
maximum value of x(a− x) is x =

a

2
.

Proof. Using the proposition given in (b) above,

x(a− x) ≤ x + (a− x)
2

=
(a

2

)2

Therefore, (a
2 )2 is the maximum value of x(a−x). Solving the equation,

x(a−x) = (a
2 )2 ⇒ 4x2−4ax+a2 = (2x−a)2 = 0. Thus, the maximum

value of x(a− x) occurs when x = a
2 .

3.1, 15. Evaluation of proofs

a. The proposition is true but this proof needs clarification.

Proof. Let m be an even integer. Then there exists a k ∈ Z such
that m = 2k. Now consider 5m+4 = 5(2k)+4 = 10k+4 = 2(5k+
2). Therefore, since 5k + 2 ∈ Z, 5m + 4 is an even integer.

b. The proposition is true and the proof is correct.

c. The proposition is false. For a counterexample, consider a = 6,
b = 2 and c = 3.

3.2, 4. Given the statement,

For all positive real numbers a and b, if
√

ab 6= a + b

2
then a 6= b.

a. The contrapositive is given by

For all positive real numbers a and b, if a = b then
√

ab =
a + b

2
.

b. This statement is true and given by

Proof. Let a, b be positive real numbers such that a = b. Then
√

ab =
√

a2 = |a| = a. Also,
a + b

2
=

a + a

2
= a.

Thus,
√

ab =
a + b

2
.
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3.2, 18. Evaluation of proofs

a. The proposition is true. However, the proof needs clarification.

Proof. Let m ∈ Z such that m is odd. By definition, there exists
an integer k such that m = 2k + 1. Now consider m + 6 =
(2k + 1) + 6 = 2k + 7 = 2(k + 3) + 1. By the closure property of
integers, k + 3 ∈ Z.
Thus, by definition, m + 6 is odd.

b. The proposition is true, but the proof needs clarification.

Proof. We will prove using the contrapositive which states
For integers m and n, if m is odd and n is odd, then mn is odd.
Let m, n ∈ Z such that m and n are both odd. Then there exist
j, k ∈ Z such that m = 2j + 1 and n = 2k + 1. Now consider

mn = (2j + 1)(2k + 1) = 4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1

Since 2jk + j + k ∈ Z, by definition, mn is odd.
Therefore, for all integers m and n, if mn is an even integer, then
m is even or n is even.

3.3, 5. Prove that the cube root of 2 is an irrational number. That is, prove
that if r is a real number such that r3 = 2, then r is an irrational
number.

Proof.
First, as it will be needed, we will use the following lemma:

Lemma 1. 2|x3 ⇒ 2|x.

Proof. (By contrapositive) x is odd ⇒ x3 is odd.
Let x ∈ Z be odd. Then ∃ k ∈ Z such that x = 2k + 1. Then

x3 = (2k + 1)3 = (8k3 + 12k2 + 6k + 1) = 2(4k3 + 6k2 + 3k) + 1

and thus, we see that x3 is odd.
Therefore, if 2|x3 then 2|x.

(By contradiction) Let r ∈ R such that r3 = 2 and assume that r is
a rational number. Then there exists p, q ∈ Z such that p and q are
relatively prime and r = p

q . Then

r3 =
(

p

q

)3

= 2⇒ p3 = 2q3
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Thus, 2|p3. From above, then 2|p⇒ ∃ k ∈ Z such that p = 2k. Thus,
p3 = (2k)3 = 2q3 ⇒ q3 = 4k3.
Thus, 4|q3 ⇒ 2|q3 ⇒ 2|q.
However, this is a contradiction to our assumption that p and q were
relatively prime.
Therefore, the cube root of 2 is irrational.

3.3, 21. Evaluation of proofs.

a. The proposition is false and a counterexample is given by m =
0. If we exclude the possibility of having m = 0, the original
proposition would be true, and a more appropriate proof is given
below.

Proof. (By contrapositive) For m ∈ Z− {0} and x ∈ R, if mx is
rational then x is rational.
Let m ∈ Z and x ∈ R such that mx is rational. Then there exists
integers p and q such that

mx =
p

q
⇒ x =

p

mq

Since m ∈ Z, we see that x is rational.
Thus, if x is irrational and m is an integer, mx is irrational.

b. The proposition is true, and the proof is correct.
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