Solutions

3.1, 12. Determine if each of the following statements is true or false. Provide a counterexample for statements that are false and provide a complete proof for those that are true.
a. For all real numbers x and $y, \sqrt{x y} \leq \frac{x+y}{2}$.

The proposition is false. As a counterexample consider $x=-2$ and $y=-2$. Then we have

$$
\sqrt{(-2)(-2)}=\sqrt{4}=2>\frac{(-2)+(-2)}{2}=-2
$$

b. For all real numbers x and $y, x y \leq\left(\frac{x+y}{2}\right)^{2}$.

Proof. Let $x, y \in \mathbb{R}$ and consider

$$
\begin{aligned}
0 & \leq(x-y)^{2}=\left(x^{2}-2 x y+y^{2}\right) \\
\Rightarrow 4 x y & \leq\left(x^{2}+2 x y+y^{2}\right)=(x+y)^{2} \\
\Rightarrow x y & \leq\left(\frac{x+y}{2}\right)^{2}
\end{aligned}
$$

c. For all nonnegative real numbers x and $y, \sqrt{x y} \leq \frac{x+y}{2}$.

Proof. Let $x, y \in \mathbb{R}^{+}$and note that

$$
x \leq y \Rightarrow x-y \leq 0 \Rightarrow(x+y)(x-y) \leq 0 \Rightarrow x^{2}-y^{2} \leq 0 \Rightarrow x^{2} \leq y^{2}
$$

Then

$$
\sqrt{x y} \leq \frac{x+y}{2} \Rightarrow x y \leq\left(\frac{x+y}{2}\right)^{2}
$$

The remainder of the proof follows from part (b) above
3.1, 13. Use one of the true inequalities in Exercise (12) to prove the following proposition.

Proposition 1. For each real number a, the value of x that gives the maximum value of $x(a-x)$ is $x=\frac{a}{2}$.

Proof. Using the proposition given in (b) above,

$$
x(a-x) \leq \frac{x+(a-x)}{2}=\left(\frac{a}{2}\right)^{2}
$$

Therefore, $\left(\frac{a}{2}\right)^{2}$ is the maximum value of $x(a-x)$. Solving the equation, $x(a-x)=\left(\frac{a}{2}\right)^{2} \Rightarrow 4 x^{2}-4 a x+a^{2}=(2 x-a)^{2}=0$. Thus, the maximum value of $x(a-x)$ occurs when $x=\frac{a}{2}$.
3.1, 15. Evaluation of proofs
a. The proposition is true but this proof needs clarification.

Proof. Let m be an even integer. Then there exists a $k \in \mathbb{Z}$ such that $m=2 k$. Now consider $5 m+4=5(2 k)+4=10 k+4=2(5 k+$ $2)$. Therefore, since $5 k+2 \in \mathbb{Z}, 5 m+4$ is an even integer.
b. The proposition is true and the proof is correct.
c. The proposition is false. For a counterexample, consider $a=6$, $b=2$ and $c=3$.
3.2, 4. Given the statement,

For all positive real numbers a and b, if $\sqrt{a b} \neq \frac{a+b}{2}$ then $a \neq b$.
a. The contrapositive is given by

For all positive real numbers a and b, if $a=b$ then $\sqrt{a b}=\frac{a+b}{2}$.
b. This statement is true and given by

Proof. Let a, b be positive real numbers such that $a=b$. Then $\sqrt{a b}=\sqrt{a^{2}}=|a|=a$. Also, $\frac{a+b}{2}=\frac{a+a}{2}=a$.
Thus, $\sqrt{a b}=\frac{a+b}{2}$.

3.2, 18. Evaluation of proofs

a. The proposition is true. However, the proof needs clarification.

Proof. Let $m \in \mathbb{Z}$ such that m is odd. By definition, there exists an integer k such that $m=2 k+1$. Now consider $m+6=$ $(2 k+1)+6=2 k+7=2(k+3)+1$. By the closure property of integers, $k+3 \in \mathbb{Z}$.
Thus, by definition, $m+6$ is odd.
b. The proposition is true, but the proof needs clarification.

Proof. We will prove using the contrapositive which states For integers m and n, if m is odd and n is odd, then $m n$ is odd. Let $m, n \in \mathbb{Z}$ such that m and n are both odd. Then there exist $j, k \in \mathbb{Z}$ such that $m=2 j+1$ and $n=2 k+1$. Now consider
$m n=(2 j+1)(2 k+1)=4 j k+2 j+2 k+1=2(2 j k+j+k)+1$
Since $2 j k+j+k \in \mathbb{Z}$, by definition, $m n$ is odd.
Therefore, for all integers m and n, if $m n$ is an even integer, then m is even or n is even.
3.3, 5. Prove that the cube root of 2 is an irrational number. That is, prove that if r is a real number such that $r^{3}=2$, then r is an irrational number.

Proof.
First, as it will be needed, we will use the following lemma:
Lemma 1. $2\left|x^{3} \Rightarrow 2\right| x$.
Proof. (By contrapositive) x is odd $\Rightarrow x^{3}$ is odd.
Let $x \in \mathbb{Z}$ be odd. Then $\exists k \in \mathbb{Z}$ such that $x=2 k+1$. Then

$$
x^{3}=(2 k+1)^{3}=\left(8 k^{3}+12 k^{2}+6 k+1\right)=2\left(4 k^{3}+6 k^{2}+3 k\right)+1
$$

and thus, we see that x^{3} is odd.
Therefore, if $2 \mid x^{3}$ then $2 \mid x$.
(By contradiction) Let $r \in \mathbb{R}$ such that $r^{3}=2$ and assume that r is a rational number. Then there exists $p, q \in \mathbb{Z}$ such that p and q are relatively prime and $r=\frac{p}{q}$. Then

$$
r^{3}=\left(\frac{p}{q}\right)^{3}=2 \Rightarrow p^{3}=2 q^{3}
$$

Thus, $2 \mid p^{3}$. From above, then $2 \mid p \Rightarrow \exists k \in \mathbb{Z}$ such that $p=2 k$. Thus, $p^{3}=(2 k)^{3}=2 q^{3} \Rightarrow q^{3}=4 k^{3}$ 。
Thus, $4\left|q^{3} \Rightarrow 2\right| q^{3} \Rightarrow 2 \mid q$.
However, this is a contradiction to our assumption that p and q were relatively prime.
Therefore, the cube root of 2 is irrational.
3.3, 21. Evaluation of proofs.
a. The proposition is false and a counterexample is given by $m=$ 0 . If we exclude the possibility of having $m=0$, the original proposition would be true, and a more appropriate proof is given below.

Proof. (By contrapositive) For $m \in \mathbb{Z}-\{0\}$ and $x \in \mathbb{R}$, if $m x$ is rational then x is rational.
Let $m \in \mathbb{Z}$ and $x \in \mathbb{R}$ such that $m x$ is rational. Then there exists integers p and q such that

$$
m x=\frac{p}{q} \Rightarrow x=\frac{p}{m q}
$$

Since $m \in \mathbb{Z}$, we see that x is rational.
Thus, if x is irrational and m is an integer, $m x$ is irrational.
b. The proposition is true, and the proof is correct.

