
MATH348: SPRING 2012 - HOMEWORK 2

INTEGRATION, ORTHOGONALITY AND FOURIER SERIES

Yes the lantern burn, burn that easy and broadcast, so raw and neatly. Thunder roll, sunshine,
work it out.

Date: January 26, 2012.
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Abstract. It is known that the Sturm-Liouville Problem (SLP),

L[y] = λy, l1y(0) + l2y
′(0) = 0, r1y(L) + r2y

′(L) = 0.(1)

where L[y] =
1

w(x)

(
−
d

dx

[
p(x)

dy

dx

]
+ q(x)y

)
, generates infinitely-many eigen-

function/eigenvalue pairs,1 which are mutually orthogonal with respect to the
inner-product

〈f, g〉 =

∫ L

0
f(x)g(x)w(x)dx(2)

where g(x) is the complex conjugate of g(x). 2 Since these eigenfunctions are
orthogonal, they are naturally linearly independent and it makes sense to ask

what space these functions are a basis for. While this question, and its answer,

is complicated and a matter of functional analysis, we can still see aspects of it
through Fourier series. Specifically, we will form arbitrary linear combinations

of the nontrivial solutions to the periodic SLP,

y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L).(3)

That is, we will write down functions of the form3

f(x) = a0 +

∞∑
n=1

an cos
(nπ
L
x
)

+ bn sin
(nπ
L
x
)

(4)

and ask the following questions:

1. What properties does the function f possess? That is, what can we

expect of functions constructed by linear combinations of the sinusoids?
2. What are the coefficients/weights in the linear combination and more

importantly, what do they mean?
3. What do the sinusoid vectors in the linear combination represent and

how does the linear combination work so that f is constructed through

the sinusoids?
What we are really doing here is studying the well-known well-celebrated

Fourier series. We begin with the following problems whose purpose is ex-

plained below:
P1. It turns out, in contrast to Taylor series, that Fourier series is based

on integration and because of this it is worthwhile to sharpen up our

integration skills. In this problem we review standard techniques of sub-
stitution and integration by parts. Also, we practice integration of ‘Dirac

functions’ and normal/Gaussian functions. Lastly, we show some stan-

dard orthogonality results. All of these methods and topics will come up
during our study of Fourier series and later Fourier transforms.

P2. A Fourier series is this ‘thing’ that takes in the data from a reasonable
function defined on a finite portion of the real line and repeats it through-
out the whole plane. In other words, a Fourier series starts of with a

single cell of information and makes periodic lattice/crystal from it. To
do this the Fourier series begins with periodic functions and through con-

structive and destructive interference of waves builds the lattice/crystal

in a manner consistent with the input data. Since it is important to con-
textualize our concepts I have provided some wikipedia readings giving
more texture to the Fourier series.

P3. In physics and calculus you dealt the vector spaces R2 and R3.4 A

fundamental concept were standard basis vectors, c1 î + c2 ĵ + c3k̂ = y ∈
R3, where c1, c2, c3 ∈ R. Another example is the phase space defined

by my′′ + ky = 0 whose basis vectors are sin(ωt) and cos(ωt). The

primary idea is that you can get to any point in the vector space by

linear combinations of some set of linearly independent basis vectors and

the question now is what the coefficient structure is. For R3 the answer
is easy b/c the standard basis vectors are orthogonal. In this problem we

review this concept and attempt to extend the concept of dot-product
and orthogonality to functions.

P4-P5. At this point we have the construct of Fourier series built, now it’s time to

use them. These problems ask you to graph a periodic function, find its
Fourier coefficients – and thus its Fourier series – and from this the graph

of Fourier partial sums. There is a online graphing utility referenced but

I will also post information on how to get Mathematica, for free, on your
personal machines.
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1In fact, more than this is known. The following are two other important results associated

with SLP.

i. SLP eigenvalues are real, countable, ordered and unbounded, λ1 < λ2 < λ3 < · · · < λn →∞
as n→∞.

ii. SLP eigenfuctions have zeros/roots. Specifically, yn associated with λn has (n − 1)−many

zeros/roots on (0, L).

2An inner-product is a generalization of a dot/scalar-product. Recall from your calcu-

lus/physics courses that a dot-product is a product between two vectors that relates to their
length and also the angle between them. Specifically, if x,y ∈ R3 then x ·y = x1y1 +x2y2 +x3y3
and x · y = |x||y| cos(θ) where |x| =

√
x · x and θ is the angle between x and y. It is not hard to

show that this product obeys three properties:

i. Symmetry: x · y = y · x
ii. Linearity: x · (αy + z) = αx · y + x · z where α ∈ R

iii. Positive definiteness: x · x ≥ 0 and x · x = 0 ⇐⇒ x = 0

The point is that any generalization of a dot-product should also obey these there rules. If we
consider the functions f and g our vectors then the integral given by 〈f, g〉 above returns a scalar(an

area under a curve), is linear(the integral of a sum is the sum of integrals), is non-negative for
〈f, f〉(this would be the integral of a non-negative function) and zero only when f is zero. Thus,

this integral can be thought of as an inner-product generalization of the dot-product.

3Recall the solutions to the ODE are:

y1(x) = c1 sin(
√
λx) + c2 cos(

√
λx), c1, c2 ∈ R, λ > 0,(5)

y2(x) = c3 sinh(
√
|λ|x) + c4 cosh(

√
|λ|x), c3, c4 ∈ R, λ < 0,(6)

y3(x) = c5x+ c6, c5, c6 ∈ R, λ = 0.(7)

Of these solutions, the only ones that are periodic are those associated with c1, c2 and c6.

4Someone once told me that a vector space is a house where you keep your vectors. This isn’t

far from the truth. Even if you haven’t been formally exposed to a vector space, say in a linear

algebra class, you have been using vector spaces tacitly for years. The basic idea is that a vector
space is a collection of mathematical objects that behave like vectors from R3. That is, if you

create a linear combination of these vectors you get yet another vector from the space. Seems

dull, and sometimes math is dull, but what is gained is that any mathematical object that obeys
the rules you know about R3 can be called a vector. So, from this perspective R2 is really not

that much different than the simple harmonic oscillator phase space. From this perspective the
questions become:

Q1. How do you systematically specify points in a vector space?

Q2. How do you find the coefficients of the linear combination?
Q3. Is there a geometric structure to the vector space?

We have answers to these questions:

A1. A vector space has a basis, which is a collection of linearly independent vectors whose size is
equal to the number of degrees of freedom or dimension of the vector space. An point in the

vector space can be specified by a linear combination of vectors from the basis.
A2. If we specify a point in the space through a linear combination then it is natural to ask what

the coefficients in this specific linear combination are – another way of saying this is what are
the coordinates of the point relative to the basis elements. If the number of basis elements is

finite then the problem is a standard problem from linear algebra. If, however, the number
of basis elements is infinite then any iterative scheme we can think of is destined to fail.

A3. The geometric structure of Rn is given through the dot-product. Often, for functions, it is
possible to generalize the dot-product to something called an inner-product and from this
define the notion of angle and length.
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1. Integration Review

We will see, because of mathematical abstraction of the scalar-product on vec-
tors, that integration is the primary tool of Fourier analysis. To prepare, we consider
the following integrations.

1.1. Integration by Parts.

∫
x3 cos(5x)dx

1.2. Integration by ?

∫
x2 sin(2x3)dx some x0 ∈ R

1.3. Orthogonality. Show that

∫ π

−π
sin(nx) cos(mx)dx = 0 for all n,m ∈ N

1.4. More Orthogonality. Show that

∫ b

a

ei
nπ
L xe−i

mπ
L xdx = 2Lδmn where L =

b−a
2 and for all n,m ∈ Z.5

1.5. Tricky IBP or Tricky Algebra.

∫
eax cos(bx)dx and

∫
eax sin(bx)dx

1.6. Integration of Delta ‘Functions’ . Justify that

∫ ∞
−∞

δ(x − x0)g(x)dx =

g(x0) for x0 ∈ R. 6

1.7. Integrals of Gaussian Functions. Show that

∫ ∞
−∞

e−x
2

dx =
√
π

2. Introduction to Fourier Series

2.1. Wikipedia. Go to http://en.wikipedia.org/wiki/Fourier_series and
read the introductory material on Fourier Series and describe in your own words
the purpose and application of Fourier Series.

2.2. Graphing. Using the Java Applet found at http://www.sunsite.ubc.ca/

LivingMathematics/V001N01/UBCExamples/Fourier/fourier.html, use the ap-
plet to graph a truncated Fourier Series approximating the saw-tooth function.
What occurs at the points jump-discontinuity?

5 Here the function δmn is called Kronecker delta function, http://en.wikipedia.org/wiki/
Kronecker_delta, and is formally defined as

δmn =

{
1, m = n

0, m 6= n
.(8)

6Here the δ is the so-called Dirac, or continuous, delta function. This isn’t a function in the
true sense of the term but instead what is called a generalized function. For more information
on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To drive home

that this function is strange, let me spoil the punch-line. The sampling function f(x) = sinc(ax)
can be used as a definition for the Delta function as a → 0. So can a bell-curve probability
distribution. Yikes!

http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Gaussian_integral
http://en.wikipedia.org/wiki/Fourier_series
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Fourier/fourier.html
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Fourier/fourier.html
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Dirac_delta_function
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2.3. Truncated Fourier Series. Read, as much as you can, of http://en.wikipedia.
org/wiki/Gibbs_phenomenon. The sum of a finite, or infinite amount of periodic
functions is periodic. Is this always true for both finite and infinite sums of contin-
uous functions? Can you think of a counterexample? 7

3. Inner-products and Orthogonality

Given,

(9) î =


√

2

2

√
2

2

 , ĵ =


−
√

2

2

√
2

2

 .
3.1. Orthonormality. Show that the vectors are orthonormal by verifying the

inner-products î · ĵ = 0 and î · î = ĵ · ĵ = 1.

3.2. Orthogonal Representation I. Show that any vector for R2 can be created

as a linear combination of î, ĵ. That is, given,

(10) x =

[
x1
x2

]
= c1 î + c2ĵ,

find c1, c2, can be found in terms of x1 and x2.

3.3. Orthogonal Representation II. Based on the derivation from class and
problem 1.4 from this homework we know that for the inner-product,

〈f, g〉 =

∫ b

a

f(x)g(x)dx(11)

were 2L = b− a we have

〈cos(ωnx), cos(ωmx)〉 = 〈sin(ωnx), sin(ωmx)〉 = Lδnm,(12)

〈cos(ωnx), sin(ωmx)〉 = 0(13)

7These questions are meant to lead you. Remembering that sine and cosine are examples of

continuous periodic functions, you should be thinking about the following string of thoughts.

i. Fourier series represent an ‘arbitrary’ periodic function in terms of known periodic functions.

ii. Increasing the number of terms in a Fourier series creates better and better sinusoidal wave-
form fits of the function f and in the limit of infinitely many terms this fit is exact ‘almost-

everywhere’.

iii. Hopefully by the time you do this problem we would have mentioned in class that the Fourier
series representation of a function converges in the sense of averages and that since jump-

discontinuities are integrable-discontinuities the Fourier series would average the right and left

hand limits of the function at the point of discontinuity. This will happen indifferent to the
actual value of the function at the point of discontinuity. Thus the Fourier series may actually

differ from its function at the boundaries of its periodic-domains! In this way we take = to

mean equality almost everywhere (http://en.wikipedia.org/wiki/Almost_everywhere).

So, we have that the sawtooth example from class and the square-wave example online are exam-
ples where the infinite sum of continuous periodic functions converges to a periodic function with

jump-discontinuities.

http://en.wikipedia.org/wiki/Gibbs_phenomenon
http://en.wikipedia.org/wiki/Gibbs_phenomenon
http://en.wikipedia.org/wiki/Almost_everywhere
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for n,m ∈ N and ωn = nπ/L. Show that for b = −a = π the coefficients in the

linear combination f(x) = a0 +

∞∑
n=1

an cos(nx) + bn sin(nx) are

a0 =
1

2π
〈f(x), 1〉 =

1

2π

∫ π

−π
f(x)dx,(14)

an =
1

π
〈f(x), cos(nx)〉 =

1

π

∫ π

−π
f(x) cos(nx)dx,(15)

bn =
1

π
〈f(x), sin(nx)〉 =

1

π

∫ π

−π
f(x) sin(nx)dx.(16)

4. Fourier Series for an Even 2π−periodic Function

Let f(x) = x2 for x ∈ (−π, π) be such that f(x+ 2π) = f(x).

4.1. Graphing. Sketch f on (−2π, 2π).

4.2. Symmetry. Is the function even, odd or neither?

4.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .

4.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any
other graphing tool, graph the first five terms of your Fourier Series Representation
of f .

5. Fourier Series for an Oddish 2π−periodic Function

Let f(x) = x+ α for x ∈ (−π, π) and α ∈ R be such that f(x+ 2π) = f(x).

5.1. Graphing. Sketch f on (−2π, 2π).

5.2. Symmetry. Is the function even, odd or neither?

5.3. Integrations. Determine the Fourier coefficients a0, an, bn of f .

5.4. Truncation. Using http://www.tutor-homework.com/grapher.html, or any
other graphing tool, graph the first five terms of your Fourier Series Representation
of f assuming that α = 1.

(Scott Strong) Department of Applied Mathematics and Statistics, Colorado School

of Mines, Golden, CO 80401
E-mail address: sstrong@mines.edu

http://www.tutor-homework.com/grapher.html
http://www.tutor-homework.com/grapher.html
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