EM waves: energy, resonators

Scalar wave equation

Maxwell equations to the EM wave equation

A simple linear resonator

Energy in EM waves

3D waves

Simple scalar wave equation

- 2nd order PDE $\frac{\partial^2}{\partial z^2} \psi(z,t) \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \psi(z,t) = 0$
- Assume separable solution

 $\Psi(z,t) = f(z)g(t)$

$$\frac{1}{f(z)}\frac{\partial^2}{\partial z^2}f(z) - \frac{1}{c^2}\frac{1}{g(t)}\frac{\partial^2}{\partial t^2}g(t) = 0$$

Each part is equal to a constant A

$$\frac{1}{f(z)}\frac{\partial^2}{\partial z^2}f(z) = A, \ \frac{1}{c^2}\frac{1}{g(t)}\frac{\partial^2}{\partial t^2}g(t) = A$$
$$f(z) = \cos(kz) \rightarrow -k^2 = A, \ g(t) = \cos(\omega t) \rightarrow -\omega^2\frac{1}{c^2} = A$$
$$\omega = \pm kc \qquad \text{Sin() also works as a second solution}$$

Full solution of wave equation

Full solution is a linear combination of both

 $\psi(z,t) = f(z)g(t) = (A_1 \cos kz + A_2 \sin kz)(B_1 \cos \omega t + B_2 \sin \omega t)$

• Too messy: use complex solution instead:

$$\psi(z,t) = f(z)g(t) = (A_1e^{ikz} + A_2e^{-ikz})(B_1e^{i\omega t} + B_2e^{-i\omega t})$$

$$\psi(z,t) = A_1B_1e^{i(kz+\omega t)} + A_2B_2e^{-i(kz+\omega t)} + A_1B_2e^{i(kz-\omega t)} + A_2B_1e^{-i(kz-\omega t)}$$

Constants are arbitrary: rewrite

$$\psi(z,t) = A_1 \cos(kz + \omega t + \phi_1) + A_2 \cos(kz - \omega t + \phi_2)$$

Interpretation of solutions

- Wave vector $k = \frac{2\pi}{\lambda}$
- Angular frequency $\omega = 2\pi v$
- Wave total phase: $\Phi = kz \omega t + \phi$
 - "absolute phase": ϕ
 - Phase velocity: c

$$\Phi = kz - kct + \phi = k(z - ct) + \phi$$

 Φ = constant when *z* = *ct*

$$\psi(z,t) = A_1 \cos(kz + \omega t + \phi_1) + A_2 \cos(kz - \omega t + \phi_2)$$

Reverse (to -z) Forward (to +z)

Maxwell's Equations to wave eqn

• The induced polarization, **P**, contains the effect of the medium:

$$\vec{\nabla} \cdot \mathbf{E} = 0 \qquad \vec{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\vec{\nabla} \cdot \mathbf{B} = 0 \qquad \vec{\nabla} \times \mathbf{B} = \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \frac{\partial \mathbf{P}}{\partial t}$$

Take the curl:

$$\vec{\nabla} \times \left(\vec{\nabla} \times \mathbf{E}\right) = -\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B} = -\frac{\partial}{\partial t} \left(\frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \frac{\partial \mathbf{P}}{\partial t}\right)$$

Use the vector ID:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B} (\mathbf{A} \cdot \mathbf{C}) - \mathbf{C} (\mathbf{A} \cdot \mathbf{B})$$

$$\vec{\nabla} \times (\vec{\nabla} \times \mathbf{E}) = \vec{\nabla} (\vec{\nabla} \cdot \mathbf{E}) - (\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E} = -\vec{\nabla}^2 \mathbf{E}$$

$$\vec{\nabla}^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}}{\partial t^2} \quad \text{``Inhomogeneous Wave Equation''}$$

Maxwell's Equations in a Medium

• The induced polarization, **P**, contains the effect of the medium:

$$\vec{\nabla}^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}}{\partial t^2}$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (**P**) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, P will oscillate at the same frequency as the input.

$$\mathbf{P}(\mathbf{E}) = \boldsymbol{\varepsilon}_0 \boldsymbol{\chi} \mathbf{E}$$

• In nonlinear optics, the induced polarization is more complicated:

$$\mathbf{P}(\mathbf{E}) = \varepsilon_0 \left(\chi^{(1)} \mathbf{E} + \chi^{(2)} \mathbf{E}^2 + \chi^{(3)} \mathbf{E}^3 + \dots \right)$$

• The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$\mathbf{P}(\mathbf{E}) = \varepsilon_0 \chi \mathbf{E}, \quad \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 (1 + \chi) \mathbf{E} = \varepsilon \mathbf{E} = n^2 \mathbf{E}$$

In this simple (and most common) case, the wave equation becomes:

$$\vec{\nabla}^{2}\mathbf{E} - \frac{1}{c^{2}}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = \frac{1}{c^{2}}\chi\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} \qquad \rightarrow \vec{\nabla}^{2}\mathbf{E} - \frac{n^{2}}{c^{2}}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = 0$$
Using: $\varepsilon_{0}\mu_{0} = 1/c^{2}$
 $\varepsilon_{0}(1+\chi) = \varepsilon = n^{2}$
 $\vec{\nabla}^{2}E_{x}(\mathbf{r},t) - \frac{n^{2}}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}E_{x}(\mathbf{r},t) =$

The electric field is a vector function in 3D, so this is actually 3 equations:

$$\vec{\nabla}^{2} E_{y}(\mathbf{r},t) - \frac{1}{c^{2}} \frac{\partial t^{2}}{\partial t^{2}} E_{y}(\mathbf{r},t) = 0$$
$$\vec{\nabla}^{2} E_{z}(\mathbf{r},t) - \frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r},t) = 0$$

 $\vec{\nabla}^2 E(\mathbf{r}, t) = n^2 \partial^2 E(\mathbf{r}, t) = 0$

 $\mathbf{0}$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y:

$$\vec{\nabla}^{2} \mathbf{E}(z,t) = \frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z,t) + \frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z,t) + \frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z,t) = \frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z,t)$$
$$\rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}} - \frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} = 0$$

The solutions are oscillating functions, for example

$$\mathbf{E}(z,t) = \hat{\mathbf{x}} E_x \cos(k_z z - \omega t)$$

Where $\omega = kc$, $k = 2\pi n / \lambda$, $v_{ph} = c / n$

This is a linearly polarized wave.

Complex notation for waves

• Write cosine in terms of exponential

$$\mathbf{E}(z,t) = \hat{\mathbf{x}} E_x \cos(kz - \omega t + \phi) = \hat{\mathbf{x}} E_x \frac{1}{2} \left(e^{i(kz - \omega t + \phi)} + e^{-i(kz - \omega t + \phi)} \right)$$

- Note E-field is a *real* quantity.
- It is convenient to work with just one part
 - We will use $E_0 e^{+i(kz-\omega t)}$ $E_0 = \frac{1}{2} E_x e^{i\phi}$
 - Svelto: $e^{-i(kz-\omega t)}$
- Then take the real part.
 - No factor of 2
 - In *nonlinear* optics, we have to explicitly include conjugate term

Example: linear resonator (1D)

Boundary conditions: conducting ends (mirrors)

$$E_{x}(z=0,t)=0$$
 $E_{x}(z=L_{z},t)=0$

- Field is a superposition of +'ve and -'ve waves: $E_x(z,t) = A_+ e^{i(k_z z - \omega t + \phi_+)} + A_- e^{i(-k_z z - \omega t + \phi_-)}$
 - Absorb phase into complex amplitude $E_{x}(z,t) = \left(A_{+}e^{+ik_{z}z} + A_{-}e^{-ik_{z}z}\right)e^{-i\omega t}$ - Apply b.c. at z = 0 $E_{x}(0,t) = 0 = \left(A_{+} + A_{-}\right)e^{-i\omega t} \rightarrow A_{+} = -A_{-}$ $E_{x}(z,t) = A\sin k_{z}z \ e^{-i\omega t}$

Quantization of frequency: longitudinal modes

• Apply b.c. at far end

$$E_x(L_z,t) = 0 = A\sin k_z L_z e^{-i\omega t}$$

$$\rightarrow k_z L_z = l \pi$$
 $l = 1, 2, 3, \cdots$

– Relate to wavelength:

$$k_z = \frac{2\pi}{\lambda} = \frac{l\pi}{L_z} \to L_z = l\frac{\lambda}{2}$$

Integer number of half-wavelengths

Relate to allowed frequencies:

$$\frac{\omega_l}{c} = \frac{l\pi}{L_z} \to v_l = l\frac{c}{2L_z}$$

Equally spaced frequencies:

$$\Delta v = \frac{c}{2L_z} = \frac{1}{T_{RT}}$$

Frequency spacing = 1/ round trip time

Wave energy and intensity

- Both E and H fields have a corresponding energy density (J/m³)
 - For static fields (e.g. in <u>capacitors</u>) the energy density can be calculated through the work done to set up the field

$$\rho = \frac{1}{2}\varepsilon E^2 + \frac{1}{2}\mu H^2$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Calculating H from E in a plane wave

• Assume a non-magnetic medium

$$\mathbf{E}(z,t) = \hat{\mathbf{x}} E_x \cos(kz - \omega t)$$
$$\vec{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$

- Can see **H** is perpendicular to **E**

$$\begin{array}{c}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_x & \partial_y & \partial_z \\
E_x & 0 & 0
\end{array} = \hat{\mathbf{y}} \partial_z E_x = -\hat{\mathbf{y}} k_z E_0 \sin(k_z z - \omega t)$$

- Integrate to get H-field:

$$\mathbf{H} = \hat{\mathbf{y}} \int \frac{k_z E_0}{\mu_0} \sin\left(k_z z - \omega t\right) dt = \hat{\mathbf{y}} \frac{k_z E_0}{\mu_0} \left(\frac{-\cos\left(k_z z - \omega t\right)}{-\omega}\right)$$

H field from E field

 H field for a propagating wave is *in phase* with Efield
 Electromagnetic Wave

$$\mathbf{H} = \hat{\mathbf{y}} H_0 \cos(k_z z - \omega t)$$
$$= \hat{\mathbf{y}} \frac{k_z}{\omega \mu_0} E_0 \cos(k_z z - \omega t)$$

Amplitudes are not independent

$$H_{0} = \frac{k_{z}}{\omega\mu_{0}}E_{0} \qquad k_{z} = n\frac{\omega}{c} \qquad c^{2} = \frac{1}{\mu_{0}}E_{0} \rightarrow \frac{1}{\mu_{0}c} = \varepsilon_{0}c$$
$$H_{0} = \frac{n}{c\mu_{0}}E_{0} = n\varepsilon_{0}cE_{0}$$

Energy density in an EM wave

Back to energy density, non-magnetic

 $\rho = \frac{1}{2} \varepsilon E^{2} + \frac{1}{2} \mu_{0} H^{2} \qquad H = n \varepsilon_{0} c E$ $\varepsilon = \varepsilon_{0} n^{2}$ $\rho = \frac{1}{2} \varepsilon_{0} n^{2} E^{2} + \frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} \qquad \varepsilon = \varepsilon_{0} n^{2}$ $\mu_{0} \varepsilon_{0} c^{2} = 1$

$$\rho = \varepsilon_0 n^2 E^2 = \varepsilon_0 n^2 E^2 \cos^2(k_z z - \omega t)$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle: $\langle \rho \rangle = \varepsilon_0 n^2 E_0^2 \frac{1}{T} \int_0^T \cos^2(k_z z - \omega t) dt$ - Graphically, we can see this should = $\frac{1}{2}$

Intensity and the Poynting vector

- Intensity is an energy flux (J/s/cm²)
- In EM the Poynting vector give energy flux
 S = E × H

- For our plane wave,

 $\mathbf{S} = \mathbf{E} \times \mathbf{H} = E_0 \cos(k_z z - \omega t) n \varepsilon_0 c E_0 \cos(k_z z - \omega t) \hat{\mathbf{x}} \times \hat{\mathbf{y}}$

$$\mathbf{S} = n\varepsilon_0 c E_0^2 \cos^2\left(k_z z - \omega t\right) \hat{\mathbf{z}}$$

– S is along k

- Time average: $\mathbf{S} = \frac{1}{2} n \varepsilon_0 c E_0^2 \hat{\mathbf{z}}$
- Intensity is the magnitude of S

$$I = \frac{1}{2}n\varepsilon_0 cE_0^2 = \frac{c}{n}\rho = V_{phase} \cdot \rho$$

Photon flux: $F = \frac{I}{hv}$

General 3D plane wave solution

Assume separable function

$$\mathbf{E}(x, y, z, t) \sim f_1(x) f_2(y) f_3(z) g(t)$$

$$\vec{\nabla}^2 \mathbf{E}(z, t) = \frac{\partial^2}{\partial x^2} \mathbf{E}(z, t) + \frac{\partial^2}{\partial y^2} \mathbf{E}(z, t) + \frac{\partial^2}{\partial z^2} \mathbf{E}(z, t) = \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}(z, t)$$

• Solution takes the form:

$$\mathbf{E}(x, y, z, t) = \mathbf{E}_{\mathbf{0}} e^{ik_{x}x} e^{ik_{y}y} e^{ik_{z}z} e^{-i\omega t} = \mathbf{E}_{\mathbf{0}} e^{i\left(k_{x}x+k_{y}y+k_{z}z\right)} e^{-i\omega t}$$
$$\mathbf{E}(x, y, z, t) = \mathbf{E}_{\mathbf{0}} e^{i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)}$$

- Now k-vector can point in arbitrary direction
- With this solution in W.E.:

$$n^2 \frac{\omega^2}{c^2} = k_x^2 + k_y^2 + k_z^2 = \mathbf{k} \cdot \mathbf{k}$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

• Simple trick:

 $\nabla \cdot \mathbf{E} = \partial_x E_x + \partial_y E_y + \partial_z E_z$

- For a plane wave,

$$\nabla \cdot \mathbf{E} = i \left(k_x E_x + k_y E_y + k_z E_z \right) = i \left(\mathbf{k} \cdot \mathbf{E} \right)$$

- Similarly,

 $\nabla \times \mathbf{E} = i(\mathbf{k} \times \mathbf{E})$

- Consequence: since $\nabla \cdot \mathbf{E} = 0$, $\mathbf{k} \perp \mathbf{E}$
 - For a given k direction, E lies in a plane
 - E.g. x and y linear polarization for a wave propagating in z direction

Writing electric field expressions: 1D

- Write a complex (phasor) expression for an E-field linearly polarized in the x-direction, propagating in the z direction. Frequency ω , wavenumber k. $E(z,t) = E_0 \exp(ikz - i\omega t)$
- Write an expression for the field of a *standing* wave (E=0 at z = 0 and z = L) and for the allowed k's.

 $E(z,t) = E_0 \sin(k_n z) \exp(-i\omega t)$, with $k_n = n\pi / L$

Writing expressions for waves: 3D

• Write an expression for a complex E-field as shown:

Interference in 2D

 Write an expression for the total field (sum of the fields as shown. Assume equal amplitude fields.

 Now write an expression for the intensity at z = 0. Just write the peak intensity as I₀.

$$I(y,z,t) = I_0 \cos^2\left(k y \sin\theta\right) = I_1 + I_2 + \sqrt{I_1 I_2} \cos\left(2k y \sin\theta\right)$$

Closed box resonator: blackbody cavity

- Here we have a 3D pattern of standing waves
 - Exact boundary conditions aren't imp't, but for conducting walls:
 - E=0 where field is parallel to wall
 - Slope E=0 where field is perp to wall (charges can accumulate there)
 - Example standing wave solution:

 $E_{x}(x, y, z) = A_{x} \cos k_{x} x \sin k_{y} y \sin k_{z} z$

- Cos() function along field direction
- Others:

 $E_{y}(x, y, z) = A_{y} \sin k_{x} x \cos k_{y} y \sin k_{z} z$ $E_{z}(x, y, z) = A_{z} \sin k_{x} x \sin k_{y} y \cos k_{z} z$

Discrete wavevectors

• Discrete values of k:

$$k_x = \frac{t\pi}{L_x} \qquad \qquad k_y = \frac{m\pi}{L_y} \qquad \qquad k_z = \frac{m\pi}{L_z}$$

With these solutions in the wave equation

$$\frac{\boldsymbol{\omega}^2}{c^2} = k_x^2 + k_y^2 + k_z^2 = \mathbf{k} \cdot \mathbf{k}$$

2 allowed polarizations

– k's are discrete, so there are discrete allowed frequencies:

$$\omega_{lmn} = c\sqrt{k_x^2 + k_y^2 + k_z^2} = c\sqrt{\left(\frac{l\pi}{L_x}\right)^2 + \left(\frac{m\pi}{L_y}\right)^2 + \left(\frac{n\pi}{L_z}\right)^2}$$
$$v_{lmn} = \frac{c}{2\pi}\sqrt{k_x^2 + k_y^2 + k_z^2} = c\sqrt{\left(\frac{l}{2L_x}\right)^2 + \left(\frac{m}{2L_y}\right)^2 + \left(\frac{n\pi}{2L_z}\right)^2}$$

Field in equilibrium with walls: classical

- Hold cavity walls at temperature T
- What is probability that a mode will be excited?
- Classical view (Boltzmann): $P(\boldsymbol{\mathcal{E}}) \propto e^{-\boldsymbol{\mathcal{E}}/kT}$
 - assume the amount of energy in each mode can take any value (continuous range) this is wrong!
 - average energy for each mode is

$$\left\langle \boldsymbol{\mathcal{E}} \right\rangle = \frac{\int\limits_{0}^{\infty} \boldsymbol{\mathcal{E}} P(\boldsymbol{\mathcal{E}}) d\boldsymbol{\mathcal{E}}}{\int\limits_{0}^{\infty} P(\boldsymbol{\mathcal{E}}) d\boldsymbol{\mathcal{E}}} = \frac{\int\limits_{0}^{\infty} \boldsymbol{\mathcal{E}} e^{-\boldsymbol{\mathcal{E}}/kT} d\boldsymbol{\mathcal{E}}}{\int\limits_{0}^{\infty} e^{-\boldsymbol{\mathcal{E}}/kT} d\boldsymbol{\mathcal{E}}} = kT$$

 Note: this is not kT/2 as in equipartition of K.E. There, integrate on velocity, which ranges – to +

Density of states

- For a given box size, there is a low frequency cutoff but no cutoff for high frequencies
- Near a given frequency, there will be a number of combinations of k's I,m,n for that frequency

Density of modes = density of states

$$g(k)dk = \frac{1}{V}\frac{dN(k)}{dk}dk = \frac{k^2}{\pi^2}dk$$

Other forms:
$$g(\omega)d\omega = \frac{\omega^2}{\pi^2 c^3}d\omega \quad g(v)dv = 8\pi \frac{v^2}{c^3}dv$$

Spectral energy density

- Generalize EM energy density to allow for spectral distribution
 - $\rho(v)dv =$ excitation energy per mode × density of modes
 - Total energy density: $\int \rho(v) dv$
 - Classical form:

$$\rho(v)dv = k_B T \frac{8\pi v^2}{c^3} dv$$

- Problem: total energy is infinite!
- Planck: only allow quantized energies for each mode
 \$\mathcal{E} = (n + \frac{1}{2})hv\$ n = number of photons in each mode
 Now get average energy/mode with sum, not integral

$$P_n = \frac{e^{-\boldsymbol{\varepsilon}_n/k_BT}}{\sum_j e^{-\boldsymbol{\varepsilon}_j/k_BT}} \qquad \text{Mean photon number:} \quad \overline{n} = \sum_n n P_n$$

Blackbody spectrum

• Mean number of photons per mode:

$$\overline{n} = \sum_{j} n P_n = 1 / \left(e^{h \nu / k_B T} - 1 \right)$$

• Spectral energy density of BB radiation:

 $\rho(v)dv = avg \# photons per mode \times hv per photon \times density of modes$

Wave propagation with absorption

• Consider light absorption from a thin slab

 $I_1 = I_0 - I_0 \alpha \, \Delta z$

• Generalize to an equation for arbitrary length:

$$I_1 - I_0 = \Delta I = -I_0 \alpha \Delta z \rightarrow \frac{dI}{dz} = -\alpha I$$
$$I(z) = I_0 e^{-\alpha z} \qquad \text{Beer's I aw}$$

 Absorption coefficient (units m⁻¹) is proportional to the number density of absorbers:

 $\alpha = N_1 \sigma$

- $-N_1$ = number density (m⁻³) of species in level 1
- $-\sigma$? Has units of m², = "cross-section"

Models for σ : hard and soft spheres

- Consider an collection of "black" spheres that absorb if struck by a photon.
- Cross-section for absorption is just the projected area of the sphere. $\sigma = \pi a^2$
- For an atom, the probability of absorption depends on how close the incident frequency is to resonance:

Example: absorption of pump light in

 Nd³⁺ is a heavy ion with many possible transitions

 Pump to anywhere above the ⁴F_{3/2} level

Fig. 2.2. Energy level diagram of Nd: YAG. The solid line represents the major transition at 1064 nm, and the dashed lines are the transitions at 1319, 1338, and 946 nm.

Absorption spectrum of Nd³⁺:YAG

Optical density (OD) = -log₁₀[T]

Pump bands near 808nm

• Powerful laser diodes (LD) are available near 808nm

3mm thick Nd:YAG crystal

- What % is absorbed at the peak (α=11/cm)?
- What is the OD?
- If N_{Nd}=1.38x10²⁰/cm³ (1% atomic), what is the absorption crosssection?
- Note: LD output wavelength depends on temperature, so this needs tuning and stabilization in real systems.

Transition rates

- We have been looking from of the point of view of the photons. What about the atoms?
 - Absorption of a photon induces a transition from level 1 to 2.

$$\frac{dN_1}{dt} = -N_1 W_{12} \qquad \frac{dN_2}{dt} = N_2 W_{21} = -\frac{dN_1}{dt}$$

- The absorption rate W must depend on the intensity and the incident frequency. We'll represent this by the spectral energy density.
- For light at a *specific* frequency, define $W_{12} = B_{12}\rho(v_0)$ B_{12} = Einstein "B" coefficient
- Will generalize later for broadband light

Spontaneous emission

 An atom in an excited state can decay to another level through radiation = spontaneous emission

$$\frac{dN_2}{dt} = -N_2 A_{21} \to N_2(t) = N_2(0) e^{-A_{21}t}$$
 Lifetime of state:
 $\tau_2 = 1 / A_{21}$

• If there are multiple destination states, rates add. Total decay out of level *i* :

$$\frac{dN_i}{dt} = -\sum_j A_i$$

Lifetime of state:

$$\tau_i = 1 / \sum_j A_{ij}$$

• Note this type of process is independent of any incident light.

Einstein's treatment of emission and absorption

- Based on thermodynamic principles, Einstein predicted the existence of stimulated emission.
- First suppose we have only absorption and spontaneous emission.
- Rate equations for a two-level system:

$$\frac{dN_1}{dt} = -N_1 B_{12} \rho(v) + N_2 A_{21} \qquad \frac{dN_2}{dt} = +N_1 B_{12} \rho(v) - N_2 A_{21}$$

• In equilibrium with the field, no net change in population densities

$$0 = -N_1^{e} B_{12} \rho(v) + N_2^{e} A_{21} \rightarrow \frac{N_2^{e}}{N_1^{e}} = \frac{B_{12} \rho(v)}{A_{21}}$$

Thermal equilibrium with BB field

 An atom that is in thermal equilibrium has populations that follow the Boltzmann distribution:

$$\frac{N_2^e}{N_1^e} = \frac{g_2}{g_1} e^{-hv_{21}/k_BT} = \frac{B_{12}\rho(v)}{A_{21}} \to \rho(v) = \frac{A_{21}}{B_{12}}\frac{g_2}{g_1} e^{-hv_{21}/k_BT}$$

• A field in thermal equilibrium should have the blackbody spectral energy density

$$\rho_{BB}(v) = 8\pi \frac{v^2}{c^3} \frac{hv}{e^{hv/k_BT} - 1}$$

 What we have is ok in the high frequency limit, but not fully consistent with the BB curve.

Stimulated emission

 Things make more sense if we allow for another route for decay from 2 to 1

$$0 = -N_1^{e} B_{12} \rho(v) + N_2^{e} B_{21} \rho(v) + N_2^{e} A_{21} \rightarrow \frac{N_2^{e}}{N_1^{e}} = \frac{B_{12} \rho(v)}{A_{21} + B_{21} \rho(v)}$$
$$\frac{N_2^{e}}{N_1^{e}} = \frac{g_2}{g_1} e^{-hv_{21}/k_B T} = \frac{B_{12} \rho(v)}{A_{21} + B_{21} \rho(v)}$$

Solve for the equilibrium spectral energy density

$$\frac{g_2}{g_1} e^{-hv_{21}/k_BT} \left(A_{21} + B_{21}\rho(v) \right) = B_{12}\rho(v)$$
$$\rho(v) = \frac{A_{21}}{B_{12}\frac{g_1}{g_2}} e^{-hv_{21}/k_BT} - B_{21}$$

Einstein's relations between A and B coefficients

 If both the atoms and BB cavity are in thermal equilibrium, the ρ(v)'s that satisfy that constraint must be the same

$$\rho_{BB}(v) = 8\pi \frac{v^2}{c^3} \frac{hv}{e^{hv/k_BT} - 1} \qquad \qquad \rho(v) = \frac{A_{21}}{B_{12} \frac{g_1}{g_2} e^{hv_{21}/k_BT} - B_{21}}$$

- The two forms will have the same structure if $B_{12}\frac{g_1}{g_2} = B_{21} \rightarrow \rho(v) = \frac{A_{21}}{B_{21}\left(e^{hv_{21}/k_BT} - 1\right)}$
- So the processes of absorption and stimulated emission are linked.
- Finally, for $\rho_{\scriptscriptstyle BB}(v) = \rho(v)$

$$A_{21} = \frac{8\pi h v^3}{c^3} B_{21}$$

Physical significance of A/B

• Dimensionally, B₂₁ ρ gives a rate, so in the relation between A and B, $A_{21} = \frac{8\pi hv^3}{c^3}B_{21}$

 $\rho(v) = \frac{8\pi h v^3}{c^3}$ is a type of spectral energy density.

In QED, the E and B energy densities are quantized, and the quanta are the photons.

 $\rho(v) = \frac{8\pi hv^3}{c^3}$ is effectively the spectral energy density of the vacuum fluctuations of the field.

Connect intensity changes to atomic rates

- In a volume V, absorbed power is $\frac{dP_a}{dV} = W_{12}N_1hv$
- For a beam with area A, $\frac{dP_a}{dV} = \frac{1}{A}\frac{dP}{dz} = -\frac{dI}{dz}$
- Intensity and energy density are related: $\rho c = I$

$$\frac{dP_a}{dV} = -\frac{dI}{dz} = B_{12}\rho N_1 hv \qquad \qquad \frac{dI}{dz} = -I N_1 \frac{B_{12}hv}{c} = -I N_1 \sigma_{12}$$

Will generalize this to account for lineshape of absorption, and bandwidth of source.

Note that the mean free path of photons in the medium is $1/\alpha$

Optical gain

• With population in both levels 1 and 2,

$$\frac{dI}{dz} = I \left(N_2 B_{21} - N_1 B_{12} \right) \frac{hv_{21}}{c} \qquad B_{12} \frac{g_1}{g_2} = B_{21}$$

$$\frac{dI}{dz} = I \left(N_2 - N_1 \frac{g_2}{g_1} \right) \frac{B_{21}hv_{21}}{c} = I N_{inv} \sigma_{21}$$
Inversion Gain cross-section
$$I(z) = I_0 e^{gz}$$
g: gain coefficient = N_{inv} \sigma_{21}
(opposite sign from absorption coefficient)

For an amplifier of length L,

 $I(L) = I_0 e^{gL} = I_0 \mathbf{G}_0$

G₀: small signal single-pass gain

General conditions for steady-state inversion (gain)

 Consider general situation, including pumping rates R₁, R₂ and lifetimes τ₁, τ₂

$$\frac{dN_2}{dt} = R_2 - \frac{N_2}{\tau_2}$$
$$\frac{dN_1}{dt} = R_1 + N_2 A_{21} - \frac{N_1}{\tau_1}$$

Both rates go to zero in steady state

Steady-state inversion

• Solve for inversion density

$$0 = R_2 - \frac{N_2}{\tau_2} \to N_2 = R_2 \tau_2$$

$$0 = R_1 + N_2 A_{21} - \frac{N_1}{\tau_1} \to N_1 = R_1 \tau_1 + N_2 A_{21} \tau_1$$

$$N_1 = \tau_1 \left(R_1 + R_2 \tau_2 A_{21} \right)$$

• For gain, $\underline{N_2} > \underline{N_1}$

$$\frac{g_2 \quad g_1}{\frac{R_2\tau_2}{g_2}} > \frac{\tau_1}{g_1} \left(R_1 + R_2\tau_2A_{21} \right) \to \frac{R_2\tau_2}{g_2} - \frac{R_2\tau_2A_{21}\tau_1}{g_1} > \frac{R_1\tau_1}{g_1}$$

$$R_{2}\tau_{2}\left(\frac{1}{g_{2}}-\frac{A_{21}\tau_{1}}{g_{1}}\right) > \frac{R_{1}\tau_{1}}{g_{1}} \qquad \qquad \frac{R_{2}\tau_{2}}{R_{1}\tau_{1}}\frac{g_{1}}{g_{2}}\left(1-\frac{g_{2}}{g_{1}}A_{21}\tau_{1}\right) > 1$$

Interpretation of conditions for steadystate gain

$$\frac{R_2\tau_2}{R_1\tau_1}\frac{g_1}{g_2}\left(1-\frac{g_2}{g_1}A_{21}\tau_1\right) > 1$$

- Selective pumping: $R_2 > R_1$
- Favorable lifetime ratio: $T_2 > T_1$
- Favorable degeneracy ratio: $g_1 > g_2$
- Necessary condition: $A_{21} < \frac{g_1}{g_2} \frac{1}{\tau_1}$
 - Lower level has to empty out faster than spontaneous emission fills it.
 - No CW 3-level system, but transient pumping is ok