EM waves: energy, resonators

Scalar wave equation
Maxwell equations to the EM wave equation
A simple linear resonator
Energy in EM waves
3D waves

Simple scalar wave equation

- $2^{\text {nd }}$ order PDE

$$
\frac{\partial^{2}}{\partial z^{2}} \psi(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(z, t)=0
$$

- Assume separable solution

$$
\psi(z, t)=f(z) g(t)
$$

$$
\frac{1}{f(z)} \frac{\partial^{2}}{\partial z^{2}} f(z)-\frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=0
$$

- Each part is equal to a constant A

$$
\begin{aligned}
& \frac{1}{f(z)} \frac{\partial^{2}}{\partial z^{2}} f(z)=A, \frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=A \\
& f(z)=\cos (k z) \rightarrow-k^{2}=A, g(t)=\cos (\omega t) \rightarrow-\omega^{2} \frac{1}{c^{2}}=A \\
& \omega= \pm k c \quad \operatorname{Sin}() \text { also works as a second solution }
\end{aligned}
$$

Full solution of wave equation

- Full solution is a linear combination of both

$$
\psi(z, t)=f(z) g(t)=\left(A_{1} \cos k z+A_{2} \sin k z\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)
$$

- Too messy: use complex solution instead:

$$
\begin{gathered}
\psi(z, t)=f(z) g(t)=\left(A_{1} e^{i k z}+A_{2} e^{-i k z}\right)\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right) \\
\psi(z, t)=A_{1} B_{1} e^{i(k+\omega t)}+A_{2} B_{2} e^{-i(k z+\omega t)}+A_{1} B_{2} e^{i(k z-\omega t)}+A_{2} B_{1} e^{-i(k z-\omega t)}
\end{gathered}
$$

- Constants are arbitrary: rewrite

$$
\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)
$$

Interpretation of solutions

- Wave vector

$$
k=\frac{2 \pi}{\lambda}
$$

- Angular frequency

$$
\omega=2 \pi \nu
$$

- Wave total phase:

$$
\Phi=k z-\omega t+\phi
$$

- "absolute phase":
ϕ
- Phase velocity: c

$$
\begin{aligned}
& \Phi=k z-k c t+\phi=k(z-c t)+\phi \\
& \Phi=\text { constant when } z=c t
\end{aligned}
$$

$$
\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)
$$

$$
\text { Reverse (to }-z) \quad \text { Forward }(\text { to }+z)
$$

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Maxwell's Equations in a Medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}, \quad \mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:
$\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Using: $\quad \varepsilon_{0} \mu_{0}=1 / c^{2}$

The electric field is a vector function in 3D, so this is actually 3 equations:

$$
\begin{aligned}
\rightarrow & \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
& \varepsilon_{0}(1+\chi)=\varepsilon=n^{2} \\
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0
\end{aligned}
$$

$$
\vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0
$$

$$
\vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.

Complex notation for waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one part
- We will use $\quad E_{0} e^{+i(k z-\omega t)} \quad E_{0}=\frac{1}{2} E_{x} e^{i \phi}$
- Svelto: $e^{-i(k z-\omega t)}$
- Then take the real part.
- No factor of 2
- In nonlinear optics, we have to explicitly include conjugate term

Example: linear resonator (1D)

- Boundary conditions: conducting ends (mirrors)

$$
E_{x}(z=0, t)=0 \quad E_{x}\left(z=L_{z}, t\right)=0
$$

- Field is a superposition of +'ve and -'ve waves:
$E_{x}(z, t)=A_{+} e^{i\left(k_{z} z-\omega t+\phi_{+}\right)}+A_{-} e^{i\left(-k_{z} z-\omega t+\phi_{-}\right)}$
- Absorb phase into complex amplitude
$E_{x}(z, t)=\left(A_{+} e^{i k_{z} z}+A_{-} e^{-i k_{z} z}\right) e^{-i \omega t}$
- Apply b.c. at $\mathrm{z}=0$
$E_{x}(0, t)=0=\left(A_{+}+A_{-}\right) e^{-i \omega t} \rightarrow A_{+}=-A_{-}$
$E_{x}(z, t)=A \sin k_{z} z e^{-i \omega t}$

Quantization of frequency: longitudinal modes

- Apply b.c. at far end
$E_{x}\left(L_{z}, t\right)=0=A \sin k_{z} L_{z} e^{-i \omega t} \quad \rightarrow k_{z} L_{z}=l \pi \quad l=1,2,3, \cdots$
- Relate to wavelength:

$$
k_{z}=\frac{2 \pi}{\lambda}=\frac{l \pi}{L_{z}} \rightarrow L_{z}=l \frac{\lambda}{2} \quad \begin{aligned}
& \text { Integer number of } \\
& \text { half-wavelengths }
\end{aligned}
$$

- Relate to allowed frequencies:

$$
\frac{\omega_{l}}{c}=\frac{l \pi}{L_{z}} \rightarrow v_{l}=l \frac{c}{2 L_{z}}
$$

- Equally spaced frequencies:

$$
\Delta v=\frac{c}{2 L_{z}}=\frac{1}{T_{R T}}
$$

Frequency spacing $=1$ / round trip time

Wave energy and intensity

- Both E and H fields have a corresponding energy density ($\mathrm{J} / \mathrm{m}^{3}$)
- For static fields (e.g. in
) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Calculating H from E in a plane wave

- Assume a non-magnetic medium

$$
\begin{aligned}
& \mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t) \\
& \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}
\end{aligned}
$$

- Can see \mathbf{H} is perpendicular to \mathbf{E}

$$
-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}=\vec{\nabla} \times \mathbf{E}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
E_{x} & 0 & 0
\end{array}\right|=\hat{\mathbf{y}} \partial_{z} E_{x}=-\hat{\mathbf{y}} k_{z} E_{0} \sin \left(k_{z} z-\omega t\right)
$$

- Integrate to get \mathbf{H}-field:

$$
\mathbf{H}=\hat{\mathbf{y}} \int \frac{k_{z} E_{0}}{\mu_{0}} \sin \left(k_{z} z-\omega t\right) d t=\hat{\mathbf{y}} \frac{k_{z} E_{0}}{\mu_{0}}\left(\frac{-\cos \left(k_{z} z-\omega t\right)}{-\omega}\right)
$$

H field from E field

- H field for a propagating wave is in phase with Efield

$$
\begin{aligned}
\mathbf{H} & =\hat{\mathbf{y}} H_{0} \cos \left(k_{z} z-\omega t\right) \\
& =\hat{\mathbf{y}} \frac{k_{z}}{\omega \mu_{0}} E_{0} \cos \left(k_{z} z-\omega t\right)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{0}=\frac{k_{z}}{\omega \mu_{0}} E_{0} \quad k_{z}=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
\end{aligned}
$$

Energy density in an EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 & \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}
$$

- For our plane wave,

$$
\begin{aligned}
\mathbf{S} & =\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}} \\
\mathbf{S} & =n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}} \\
& -\mathbf{S} \text { is along } \mathbf{k}
\end{aligned}
$$

- Time average: $\quad \mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of \mathbf{S}

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } F=\frac{I}{h v}
$$

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k} r-\omega t)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

- Simple trick:

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
$$

- For a plane wave,

$$
\nabla \cdot \mathbf{E}=i\left(k_{x} E_{x}+k_{y} E_{y}+k_{z} E_{z}\right)=i(\mathbf{k} \cdot \mathbf{E})
$$

- Similarly,

$$
\nabla \times \mathbf{E}=i(\mathbf{k} \times \mathbf{E})
$$

- Consequence: since $\quad \nabla \cdot \mathbf{E}=0, \mathbf{k} \perp \mathbf{E}$
- For a given k direction, E lies in a plane
- E.g. x and y linear polarization for a wave propagating in z direction

Writing electric field expressions: 1D

- Write a complex (phasor) expression for an E-field linearly polarized in the x-direction, propagating in the z direction. Frequency ω, wavenumber k.

$$
E(z, t)=E_{0} \exp (i k z-i \omega t)
$$

- Write an expression for the field of a standing wave ($\mathrm{E}=0$ at $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{L}$) and for the allowed k's.

$$
E(z, t)=E_{0} \sin \left(k_{n} z\right) \exp (-i \omega t), \text { with } k_{n}=n \pi / L
$$

Writing expressions for waves: 3D

- Write an expression for a complex E-field as shown:

$$
\mathbf{E}(y, z, t)=E_{0}[\hat{\mathbf{y}} \cos \theta-\hat{\mathbf{z}} \sin \theta] e^{i(k y \sin \theta+k z \cos \theta-\omega t)}
$$

Interference in 2D

- Write an expression for the total field (sum of the fields as shown. Assume equal amplitude fields.

- Now write an expression for the intensity at $z=0$. Just write the peak intensity as I_{0}.

$$
I(y, z, t)=I_{0} \cos ^{2}(k y \sin \theta)=I_{1}+I_{2}+\sqrt{I_{1} I_{2}} \cos (2 k y \sin \theta)
$$

Closed box resonator: blackbody cavity

- Here we have a 3D pattern of standing waves
- Exact boundary conditions aren't imp't, but for conducting walls:
- $\mathrm{E}=0$ where field is parallel to wall
- Slope $\mathrm{E}=0$ where field is perp to wall (charges can accumulate there)
- Example standing wave solution:

$$
E_{x}(x, y, z)=A_{x} \cos k_{x} x \sin k_{y} y \sin k_{z} z
$$

- $\operatorname{Cos}()$ function along field direction

- Others:

$$
\begin{aligned}
& E_{y}(x, y, z)=A_{y} \sin k_{x} x \cos k_{y} y \sin k_{z} z \\
& E_{z}(x, y, z)=A_{z} \sin k_{x} x \sin k_{y} y \cos k_{z} z
\end{aligned}
$$

Discrete wavevectors

- Discrete values of k :

$$
k_{x}=\frac{l \pi}{L_{x}} \quad k_{y}=\frac{m \pi}{L_{y}} \quad k_{z}=\frac{n \pi}{L_{z}}
$$

- With these solutions in the wave equation

$$
\frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k} \quad 2 \text { allowed polarizations }
$$

- k's are discrete, so there are discrete allowed frequencies:

$$
\begin{aligned}
& \omega_{l m n}=c \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l \pi}{L_{x}}\right)^{2}+\left(\frac{m \pi}{L_{y}}\right)^{2}+\left(\frac{n \pi}{L_{z}}\right)^{2}} \\
& v_{l m n}=\frac{c}{2 \pi} \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l}{2 L_{x}}\right)^{2}+\left(\frac{m}{2 L_{y}}\right)^{2}+\left(\frac{n}{2 L_{z}}\right)^{2}}
\end{aligned}
$$

Field in equilibrium with walls: classical

- Hold cavity walls at temperature T
- What is probability that a mode will be excited?
- Classical view (Boltzmann): $\quad P(\boldsymbol{\varepsilon}) \propto e^{-\varepsilon / k T}$
- assume the amount of energy in each mode can take any value (continuous range) this is wrong!
- average energy for each mode is

$$
\langle\boldsymbol{\varepsilon}\rangle=\frac{\int_{0}^{\infty} \boldsymbol{\varepsilon} P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}=\frac{\int_{0}^{\infty} \boldsymbol{\varepsilon} e^{-\boldsymbol{\varepsilon} / k T} d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} e^{-\boldsymbol{\varepsilon} k T} d \boldsymbol{\varepsilon}}=k T
$$

- Note: this is not kT/2 as in equipartition of K.E. There, integrate on velocity, which ranges - to +

Density of states

- For a given box size, there is a low frequency cutoff but no cutoff for high frequencies
- Near a given frequency, there will be a number of combinations of k 's I, m, n for that frequency

$$
N(k)=\# \text { pol states } \times \frac{\text { volume of k-space octant }}{\text { volume of unit k-space cell }}
$$

$$
=2 \frac{1}{8} \frac{(4 / 3) \pi k^{3}}{\frac{\pi}{L_{x}} \times \frac{\pi}{L_{y}} \times \frac{\pi}{L_{z}}}=\frac{k^{3}}{3 \pi^{2}} V
$$

Density of modes $=$ density of states

$$
g(k) d k=\frac{1}{V} \frac{d N(k)}{d k} d k=\frac{k^{2}}{\pi^{2}} d k
$$

Other forms:

$$
g(\omega) d \omega=\frac{\omega^{2}}{\pi^{2} c^{3}} d \omega \quad g(v) d \nu=8 \pi \frac{v^{2}}{c^{3}} d \nu
$$

Spectral energy density

- Generalize EM energy density to allow for spectral distribution
$\rho(v) d \nu=$ excitation energy per mode \times density of modes
- Total energy density: $\int \rho(v) d v$
- Classical form:

$$
\rho(v) d v=k_{B} T \frac{8 \pi v^{2}}{c^{3}} d v
$$

- Problem: total energy is infinite!
- Planck: only allow quantized energies for each mode

$$
\varepsilon=\left(n+\frac{1}{2}\right) h v \quad n=\text { number of photons in each mode }
$$

- Now get average energy/mode with sum, not integral

$$
P_{n}=\frac{e^{-\varepsilon_{n} / k_{B} T}}{\sum_{j} e^{-\varepsilon_{j} / k_{B} T}} \quad \text { Mean photon number: } \bar{n}=\sum_{n} n P_{n}
$$

Blackbody spectrum

- Mean number of photons per mode:

$$
\bar{n}=\sum_{j} n P_{n}=1 /\left(e^{h \nu / k_{B} T}-1\right)
$$

- Spectral energy density of BB radiation:
$\rho(v) d v=\operatorname{avg} \#$ photons per mode $\times h v$ per photon \times density of modes

Wave propagation with absorption

- Consider light absorption from a thin slab

$$
I_{1}=I_{0}-I_{0} \alpha \Delta z
$$

- Generalize to an equation for arbitrary length:

$$
\begin{aligned}
& I_{1}-I_{0}=\Delta I=-I_{0} \alpha \Delta z \rightarrow \frac{d I}{d z}=-\alpha I \\
& I(z)=I_{0} e^{-\alpha z} \quad \text { Beer's Law }
\end{aligned}
$$

- Absorption coefficient (units m^{-1}) is proportional to the number density of absorbers:

$$
\alpha=N_{1} \sigma
$$

- $\mathrm{N}_{1}=$ number density (m^{-3}) of species in level 1
- σ ? Has units of m^{2}, = "cross-section"

Models for $\boldsymbol{\sigma}$: hard and soft spheres

- Consider an collection of "black" spheres that absorb if struck by a photon.
- Cross-section for absorption is just the projected area of the sphere. $\sigma=\pi a^{2}$
- For an atom, the probability of absorption depends on how close the incident frequency is to resonance:

Absorption lines are broadened, so exact energy is not required.

$$
\sigma \rightarrow \sigma(v)
$$

Example: absorption of pump light in

Fig. 2.2. Energy level diagram of Nd:YAG. The solid line represents the major transition at 1064 nm , and the dashed lines are the transitions at 1319,1338 , and 946 nm .

- Nd^{3+} is a heavy ion with many possible transitions
- Pump to anywhere above the ${ }^{4} \mathrm{~F}_{3 / 2}$ level

Absorption spectrum of $\mathbf{N d}^{3+}:$ YAG

- Optical density (OD) $=-\log _{10}[T]$

Pump bands near 808nm

- Powerful laser diodes (LD) are available near 808nm

3mm thick Nd:YAG crystal

- What \% is absorbed at the peak ($\alpha=11 / \mathrm{cm}$)?
- What is the OD?
- If $\mathrm{N}_{\mathrm{Nd}}=1.38 \times 10^{20} / \mathrm{cm}^{3}$ (1% atomic), what is the absorption crosssection?
- Note: LD output wavelength depends on temperature, so this needs tuning and stabilization in real systems.

Transition rates

- We have been looking from of the point of view of the photons. What about the atoms?
- Absorption of a photon induces a transition from level 1 to 2.

$$
\frac{d N_{1}}{d t}=-N_{1} W_{12} \quad \frac{d N_{2}}{d t}=N_{2} W_{21}=-\frac{d N_{1}}{d t}
$$

- The absorption rate W must depend on the intensity and the incident frequency. We'll represent this by the spectral energy density.
- For light at a specific frequency, define

$$
W_{12}=B_{12} \rho\left(v_{0}\right) \quad \mathrm{B}_{12}=\text { Einstein " } \mathrm{B} \text { " coefficient }
$$

- Will generalize later for broadband light

Spontaneous emission

- An atom in an excited state can decay to another level through radiation = spontaneous emission

$$
\frac{d N_{2}}{d t}=-N_{2} A_{21} \rightarrow N_{2}(t)=N_{2}(0) e^{-A_{21} t} \quad \text { Lifetime of stat } \quad \tau_{2}=1 / A_{21}
$$

- If there are multiple destination states, rates add. Total decay out of level i :

$$
\frac{d N_{i}}{d t}=-\sum_{j} A_{i j}
$$

Lifetime of state:

$$
\tau_{i}=1 / \sum_{j} A_{i j}
$$

- Note this type of process is independent of any incident light.

Einstein's treatment of emission and absorption

- Based on thermodynamic principles, Einstein predicted the existence of stimulated emission.
- First suppose we have only absorption and spontaneous emission.
- Rate equations for a two-level system:

$$
\frac{d N_{1}}{d t}=-N_{1} B_{12} \rho(v)+N_{2} A_{21} \quad \frac{d N_{2}}{d t}=+N_{1} B_{12} \rho(v)-N_{2} A_{21}
$$

- In equilibrium with the field, no net change in population densities

$$
0=-N_{1}{ }^{e} B_{12} \rho(v)+N_{2}{ }^{e} A_{21} \rightarrow \frac{N_{2}{ }^{e}}{N_{1}{ }^{e}}=\frac{B_{12} \rho(v)}{A_{21}}
$$

Thermal equilibrium with BB field

- An atom that is in thermal equilibrium has populations that follow the Boltzmann distribution:

$$
\frac{N_{2}^{e}}{N_{1}^{e}}=\frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}=\frac{B_{12} \rho(v)}{A_{21}} \rightarrow \rho(v)=\frac{A_{21}}{B_{12}} \frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}
$$

- A field in thermal equilibrium should have the blackbody spectral energy density

$$
\rho_{B B}(v)=8 \pi \frac{v^{2}}{c^{3}} \frac{h v}{e^{h\left(V_{k} T\right.}-1}
$$

- What we have is ok in the high frequency limit, but not fully consistent with the BB curve.

Stimulated emission

- Things make more sense if we allow for another route for decay from 2 to 1

$$
\begin{gathered}
0=-N_{1}^{e} B_{12} \rho(v)+N_{2}{ }^{e} B_{21} \rho(v)+N_{2}{ }^{e} A_{21} \rightarrow \frac{N_{2}{ }^{e}}{N_{1}^{e}}=\frac{B_{12} \rho(v)}{A_{21}+B_{21} \rho(v)} \\
\frac{N_{2}^{e}}{N_{1}^{e}}=\frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}=\frac{B_{12} \rho(v)}{A_{21}+B_{21} \rho(v)}
\end{gathered}
$$

- Solve for the equilibrium spectral energy density

$$
\begin{aligned}
& \frac{g_{2}}{g_{1}} e^{-h v_{21} / k_{B} T}\left(A_{21}+B_{21} \rho(v)\right)=B_{12} \rho(v) \\
& \rho(v)=\frac{A_{21}}{B_{12} \frac{g_{1}}{g_{2}} e^{h_{21} / k_{B} T}-B_{21}}
\end{aligned}
$$

Einstein's relations between A and B coefficients

- If both the atoms and BB cavity are in thermal equilibrium, the $\rho(\mathrm{v})$'s that satisfy that constraint must be the same
$\rho_{B B}(v)=8 \pi \frac{v^{2}}{c^{3}} \frac{h v}{e^{h v / k_{B} T}-1}$

$$
\rho(v)=\frac{A_{21}}{B_{12} \frac{g_{1}}{g_{2}} e^{h v_{21} / k_{B} T}-B_{21}}
$$

- The two forms will have the same structure if

$$
B_{12} \frac{g_{1}}{g_{2}}=B_{21} \rightarrow \rho(v)=\frac{A_{21}}{B_{21}\left(e^{h v_{21} k_{B} T}-1\right)}
$$

- So the processes of absorption and stimulated emission are linked.
- Finally, for $\rho_{B B}(v)=\rho(v)$

$$
A_{21}=\frac{8 \pi h v^{3}}{c^{3}} B_{21}
$$

Physical significance of A/B

- Dimensionally, $\mathrm{B}_{21} \rho$ gives a rate, so in the relation between A and $\mathrm{B},{ }_{A_{21}}=\frac{8 \pi h v^{3}}{c^{3}} B_{21}$
$\rho(v)=\frac{8 \pi h v^{3}}{c^{3}}$ is a type of spectral energy density.

In QED, the E and B energy densities are quantized, and the quanta are the photons.
$\rho(v)=\frac{8 \pi h v^{3}}{c^{3}}$ is effectively the spectral energy density of the vacuum fluctuations of the field.

Connect intensity changes to atomic rates

- In a volume V , absorbed power is $\frac{d P_{a}}{d V}=W_{12} N, h v$
- For a beam with area $\mathrm{A}, \frac{d P_{e}}{d V}=\frac{1}{A} \frac{d P}{d z}=-\frac{d I}{d z}$
- Intensity and energy density are related: $\rho c=I$

$$
\frac{d P_{a}}{d V}=-\frac{d I}{d z}=B_{12} \rho N_{1} h v \quad \frac{d I}{d z}=-I N_{1} \frac{B_{12} h v}{c}=-I N_{1} \sigma_{12}
$$

$$
\sigma_{12}=\frac{B_{12} h v}{c}
$$

Will generalize this to account for lineshape of absorption, and bandwidth of source.

Note that the mean free path of photons in the medium is $1 / \alpha$

Optical gain

- With population in both levels 1 and 2,

$$
\begin{aligned}
& \frac{d I}{d z}=I\left(N_{2} B_{21}-N_{1} B_{12}\right) \frac{h v_{21}}{c} \quad B_{12} \frac{g_{1}}{g_{2}}=B_{21} \\
& \frac{d I}{d z}=I\left(N_{2}-N_{1} \frac{g_{2}}{g_{1}}\right) \frac{B_{21} h v_{21}}{c}=I N_{i n v} \sigma_{21}
\end{aligned}
$$

Inversion density	Gain cross- section

$$
I(z)=I_{0} e^{g z} \quad \begin{aligned}
& \text { g: gain coefficient }=\mathrm{N}_{\text {inv }} \sigma_{21} \\
& \text { (opposite sign from absorption coefficient) }
\end{aligned}
$$

For an amplifier of length L ,

$$
I(L)=I_{0} e^{g L}=I_{0} G_{0} \quad \mathrm{G}_{0}: \text { small signal single-pass gain }
$$

General conditions for steady-state inversion (gain)

- Consider general situation, including pumping rates R_{1}, R_{2} and lifetimes T_{1}, T_{2}

- Lifetime of level 2 includes $1 / A_{21}$, but also includes decay to other levels

$$
\begin{aligned}
& \frac{d N_{2}}{d t}=R_{2}-\frac{N_{2}}{\tau_{2}} \\
& \frac{d N_{1}}{d t}=R_{1}+N_{2} A_{21}-\frac{N_{1}}{\tau_{1}}
\end{aligned}
$$

Both rates go to zero in steady state

Steady-state inversion

- Solve for inversion density

$$
\begin{aligned}
& 0=R_{2}-\frac{N_{2}}{\tau_{2}} \rightarrow N_{2}=R_{2} \tau_{2} \\
& 0=R_{1}+N_{2} A_{21}-\frac{N_{1}}{\tau_{1}} \rightarrow N_{1}=R_{1} \tau_{1}+N_{2} A_{21} \tau_{1} \\
& N_{1}=\tau_{1}\left(R_{1}+R_{2} \tau_{2} A_{21}\right)
\end{aligned}
$$

- For gain, $\frac{N_{2}}{g_{2}}>\frac{N_{1}}{g_{1}}$

$$
\begin{aligned}
& \frac{R_{2} \tau_{2}}{g_{2}}>\frac{\tau_{1}}{g_{1}}\left(R_{1}+R_{2} \tau_{2} A_{21}\right) \rightarrow \frac{R_{2} \tau_{2}}{g_{2}}-\frac{R_{2} \tau_{2} A_{21} \tau_{1}}{g_{1}}>\frac{R_{1} \tau_{1}}{g_{1}} \\
& R_{2} \tau_{2}\left(\frac{1}{g_{2}}-\frac{A_{21} \tau_{1}}{g_{1}}\right)>\frac{R_{1} \tau_{1}}{g_{1}}
\end{aligned}
$$

Interpretation of conditions for steadystate gain

$$
\frac{R_{2} \tau_{2}}{R_{1} \tau_{1}} \frac{g_{1}}{g_{2}}\left(1-\frac{g_{2}}{g_{1}} A_{21} \tau_{1}\right)>1
$$

- Selective pumping: $R_{2}>R_{1}$
- Favorable lifetime ratio: $T_{2}>T_{1}$
- Favorable degeneracy ratio: $g_{1}>g_{2}$
- Necessary condition:

$$
A_{21}<\frac{g_{1}}{g_{2}} \frac{1}{\tau_{1}}
$$

- Lower level has to empty out faster than spontaneous emission fills it.
- No CW 3-level system, but transient pumping is ok

