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Simple scalar wave equation 
•  2nd order PDE 
 
•  Assume separable solution 

–  Each part is equal to a constant A 

  
∂2

∂z2ψ (z,t) − 1
c2

∂2

∂t2ψ (z,t) = 0

  ψ (z,t) = f z( )g t( )

  

1
f z( )

∂2

∂z2 f (z) − 1
c2

1
g t( )

∂2

∂t2 g t( ) = 0

  

1
f z( )

∂2

∂z2 f (z) = A, 1
c2

1
g t( )

∂2

∂t2 g t( ) = A

  
f (z) = cos kz( )→−k 2 = A, g t( ) = cos ω t( )→−ω 2 1

c2 = A

 ω = ±k c Sin( ) also works as a second solution 



Full solution of wave equation 
•  Full solution is a linear combination of both 

•  Too messy: use complex solution instead: 

–  Constants are arbitrary: rewrite 

  ψ (z,t) = f z( )g t( ) = A1 coskz + A2 sin kz( ) B1 cosωt + B2 sinωt( )

  ψ (z,t) = f z( )g t( ) = A1e
ikz + A2e

− ikz( ) B1e
iωt + B2e

− iωt( )
  ψ (z,t) = A1B1e

i kz+ωt( ) + A2B2e
− i kz+ωt( ) + A1B2e

i kz−ωt( ) + A2B1e
− i kz−ωt( )

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )



Interpretation of solutions 
•  Wave vector 

•  Angular frequency 

•  Wave total phase: 
–  “absolute phase”: 
– Phase velocity: c    

  
k = 2π

λ

 ω = 2πν

 Φ = kz −ωt +φ
φ

  Φ = constant when z = ct
 Φ = kz − k ct +φ = k z − ct( ) +φ

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )
Forward (to +z) Reverse (to -z) 



Maxwell's Equations to wave eqn 
•  The induced polarization, P,  contains the effect of the medium:  

    


∇⋅E = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = 1

c2

∂E
∂t

+ µ0

∂P
∂t

Take the curl:"

“Inhomogeneous Wave Equation”"

    


∇×


∇×E( ) = − ∂

∂t

∇×B = − ∂

∂t
1
c2

∂E
∂t

+ µ0

∂P
∂t

⎛
⎝⎜

⎞
⎠⎟

Use the vector ID:"

 A × B ×C( ) = B A ⋅C( )−C A ⋅B( )

   

∇×


∇×E( ) = ∇ ∇⋅E( )− ∇⋅


∇( )E = −


∇2E

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2



Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) can be thought of as the driving term for the 
solution to this equation, so the polarization determines which 
frequencies will occur. 
•  For linear response, P will oscillate at the same frequency as the input. 

•  In nonlinear optics, the induced polarization is more complicated: 

•  The extra nonlinear terms can lead to new frequencies.    

    


∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

  P E( ) = ε0χE

  
P E( ) = ε0 χ (1)E+ χ (2)E2 + χ (3)E3 + ...( )



Solving the wave equation: 
            linear induced polarization 
For low irradiances, the polarization is proportional to the incident field:"

   P E( ) = ε0χE, D = ε0E+ P = ε0 1+ χ( )E = εE = n2E

 "

In this simple (and most common) case, the wave equation becomes:"

The electric field is a vector 
function in 3D, so this is 
actually 3 equations:"

Using:"   ε0µ0 = 1/ c2

    


∇2E− 1

c2

∂2E
∂t2 = 1

c2 χ
∂2E
∂t2     

→

∇2E− n2

c2

∂2E
∂t2 = 0

    


∇2Ex r,t( )− n2

c2

∂2

∂t2 Ex r,t( ) = 0

    


∇2Ey r,t( )− n2

c2

∂2

∂t2 Ey r,t( ) = 0

    


∇2Ez r,t( )− n2

c2

∂2

∂t2 Ez r,t( ) = 0

  ε0 1+ χ( ) = ε = n2



Plane wave solutions for the wave equation 

 "This is a linearly polarized wave."

Where"

   
→ ∂2E

∂z2 − n2

c2

∂2E
∂t2 = 0

If we assume the solution has no dependence on x or y:"

  ω = k c, k = 2πn / λ, vph = c / n

    


∇2E z,t( ) = ∂2

∂x2 E z,t( ) + ∂2

∂y2 E z,t( ) + ∂2

∂z2 E z,t( ) = ∂2

∂z2 E z,t( )

The solutions are oscillating functions, for example"

E z,t( ) = x̂Ex cos kzz −ωt( )



Complex notation for waves 
•  Write cosine in terms of exponential 

–  Note E-field is a real quantity.  
–  It is convenient to work with just one part 

•  We will use  
•  Svelto:  

–  Then take the real part.   
•  No factor of 2 
•  In nonlinear optics, we have to explicitly include 

conjugate term 
 

E z,t( ) = x̂Ex cos kz −ωt +φ( ) = x̂Ex
1
2
ei kz−ωt+φ( ) + e− i kz−ωt+φ( )( )

E0e
+ i kz−ωt( )

e− i kz−ωt( )
E0 = 1

2 Exe
iφ



Example: linear resonator (1D) 
•  Boundary conditions: conducting ends (mirrors) 

•  Field is a superposition of +’ve and –’ve waves: 

–  Absorb phase into complex amplitude 

–  Apply b.c. at z = 0 

Ex z,t( ) = A+e
i kzz−ωt+φ+( ) + A−e

i −kzz−ωt+φ−( )

Ex z = 0,t( ) = 0 Ex z = Lz ,t( ) = 0

Ex z,t( ) = A+e
+ ikzz + A−e

− ikzz( )e− iωt

Ex 0,t( ) = 0 = A+ + A−( )e− iωt → A+ = −A−

Ex z,t( ) = Asin kzz e− iωt



Quantization of frequency: longitudinal 
modes 

•  Apply b.c. at far end 

–  Relate to wavelength: 

–  Relate to allowed frequencies:  

–  Equally spaced frequencies:  

Ex Lz ,t( ) = 0 = Asin kz Lz e− iωt → kzLz = lπ  l= 1,2,3,

kz =
2π
λ

= lπ
Lz

→ Lz = l
λ
2

Integer number of 
half-wavelengths 

ω l

c
= lπ
Lz

→ν l = l
c
2Lz

Δν = c
2Lz

= 1
TRT

Frequency spacing 
= 1/ round trip time 



Wave energy and intensity 
•  Both E and H fields have a corresponding 

energy density (J/m3) 
–  For static fields (e.g. in capacitors) the energy 

density can be calculated through the work 
done to set up the field 

 
–  Some work is required to polarize the medium 
–  Energy is contained in both fields, but H field 

can be calculated from E field 

ρ = 1
2 εE

2 + 1
2 µH

2



Calculating H from E in a plane wave 
•  Assume a non-magnetic medium 

–  Can see H is perpendicular to E 

–  Integrate to get H-field: 

E z,t( ) = x̂Ex cos kz −ωt( )

    


∇×E = − ∂B

∂t
= −µ0

∂H
∂t

    

−µ0

∂H
∂t

=

∇×E =

x̂ ŷ ẑ
∂x ∂ y ∂z

Ex 0 0

= ŷ∂z Ex = −ŷkz E0 sin kz z −ωt( )

   
H = ŷ

kz E0

µ0

sin kz z −ωt( )dt∫ = ŷ
kz E0

µ0

−cos kz z −ωt( )
−ω

⎛

⎝
⎜

⎞

⎠
⎟



H field from E field 
•  H field for a propagating wave is in phase with E-

field 

•  Amplitudes are not independent 

   

H = ŷH0 cos kz z −ωt( )
= ŷ

kz

ωµ0

E0 cos kz z −ωt( )

  
H0 =

kz

ωµ0

E0
 
kz = nω

c   
c2 = 1

µ0ε0

→ 1
µ0c

= ε0c

  
H0 =

n
cµ0

E0 = nε0cE0



Energy density in an EM wave 
•  Back to energy density, non-magnetic 

ρ = 1
2 εE

2 + 1
2 µ0H

2

ε = ε0n
2

  µ0ε0c
2 = 1

  H = nε0cE

ρ = 1
2 ε0n

2E2 + 1
2 µ0n

2ε0
2c2E2

ρ = ε0n
2E2 = ε0n

2E2 cos2 kzz −ωt( )
Equal energy in both components of wave 



Cycle-averaged energy density 
•  Optical oscillations are faster than detectors 
•  Average over one cycle: 

–  Graphically, we can see this should = ½  

–  Regardless of position z 

ρ = ε0n
2E0

2 1
T

cos2 kzz −ωt( )dt
0

T

∫

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

t/T 

k z = 0 

k z = π/4 

ρ = 1
2
ε0n

2E0
2



Intensity and the Poynting vector 

•  Intensity is an energy flux (J/s/cm2) 
•  In EM the Poynting vector give energy flux 

–  For our plane wave, 

–   S is along k 
•  Time average: 
•  Intensity is the magnitude of S  

S = E×H

S = E×H = E0 cos kzz −ωt( )nε0cE0 cos kzz −ωt( ) x̂ × ŷ
S = nε0cE0

2 cos2 kzz −ωt( ) ẑ

S = 1
2 nε0cE0

2ẑ

I = 1
2
nε0cE0

2 = c
n
ρ =Vphase ⋅ ρ F = I

hν
Photon flux: 



General 3D plane wave solution 
•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 

    


∇2E z,t( ) = ∂2

∂x2 E z,t( ) + ∂2

∂y2 E z,t( ) + ∂2

∂z2 E z,t( ) = n2

c2

∂2

∂t2 E z,t( )
   E(x, y,z,t) ~ f1 x( ) f2 y( ) f3 z( )g t( )

E(x, y, z,t) = E0e
ikxxeikyyeikzze− iωt = E0e

i kxx+kyy+kzz( )e− iωt

E(x, y, z,t) = E0e
i k⋅r−ωt( )

n2 ω
2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k Valid even in waveguides 
and resonators 



Grad and curl of 3D plane waves 
•  Simple trick: 

– For a plane wave, 

– Similarly, 

•  Consequence: since 
–  For a given k direction, E lies in a plane 
–  E.g. x and y linear polarization for a wave propagating 

in z direction   

∇⋅E = ∂x Ex + ∂y Ey + ∂z Ez

∇⋅E = i kxEx + kyEy + kzEz( ) = i k ⋅E( )

∇×E = i k ×E( )
∇⋅E = 0, k ⊥ E



Writing electric field expressions: 1D 
•  Write a complex (phasor) expression for an E-field 

linearly polarized in the x-direction, propagating in the z 
direction. Frequency ω, wavenumber k. 

•  Write an expression for the field of a standing wave 
(E=0 at z = 0 and z = L) and for the allowed k’s. 

E z,t( ) = E0 exp ikz − iωt( )

E z,t( ) = E0 sin knz( )exp −iωt( ),   with kn = nπ / L



Writing expressions for waves: 3D 
•  Write an expression for a complex E-field as shown: 

E y, z,t( ) = E0 ŷcosθ − ẑsinθ[ ]ei k ysinθ+k zcosθ−ωt( )

y 

z 
θ 

E0 
k 

E y, z,t( ) = E0x̂ei k ysinθ+k zcosθ−ωt( )

y 

z 
θ 

k E0 



Interference in 2D 
•  Write an expression for the total field (sum of the fields as 

shown. Assume equal amplitude fields. 

•  Now write an expression for the intensity at z = 0. Just 
write the peak intensity as I0. 

y 

z 
θ 

E1 
k1 

-θ 
k2 E2 

E y, z,t( ) = E0x̂ e+ i k ysinθ + e− i k ysinθ( )ei k zcosθ−ωt( )

I y, z,t( ) = I0 cos2 k ysinθ( ) = I1 + I2 + I1I2 cos 2k ysinθ( )



Closed box resonator: blackbody cavity 
•  Here we have a 3D pattern of standing waves 

– Exact boundary conditions aren’t imp’t, but for 
conducting walls: 

•  E=0 where field is parallel to wall 
•  Slope E=0 where field is perp to wall (charges can 

accumulate there) 
– Example standing wave solution: 

•  Cos( ) function along field direction 

– Others:  

  Ex x, y,z( ) = Ax coskxx sin ky y sin kz z
Ex + - 

  Ey x, y,z( ) = Ay sin kxxcosky y sin kz z

  Ez x, y,z( ) = Az sin kxx sin ky y coskz z



Discrete wavevectors 
•  Discrete values of k: 

•  With these solutions in the wave equation 

–  k’s are discrete, so there are discrete allowed 
frequencies: 

ω 2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k

kx =
lπ
Lx

ky =
mπ
Ly

kz =
nπ
Lz

ω lmn = c kx
2 + ky

2 + kz
2 = c lπ

Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ mπ
Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ nπ
Lz

⎛
⎝⎜

⎞
⎠⎟

2

ν lmn =
c
2π

kx
2 + ky

2 + kz
2 = c l

2Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ m
2Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ n
2Lz

⎛
⎝⎜

⎞
⎠⎟

2

2 allowed polarizations 



Field in equilibrium with walls: classical 
•  Hold cavity walls at temperature T 
•  What is probability that a mode will be excited? 
•  Classical view (Boltzmann): 

–  assume the amount of energy in each mode can take any 
value (continuous range) this is wrong! 

–  average energy for each mode is 

–  Note: this is not kT/2 as in equipartition of K.E. There, 
integrate on velocity, which ranges – to + 

 P E( )∝ e−E /kT

 

E =
E P E( )

0

∞

∫ dE

P E( )
0

∞

∫ dE
=

E e−E /kT dE
0

∞

∫

e−E /kT

0

∞

∫ dE
= kT



Density of states 
•  For a given box size, there is a low frequency cutoff but no 

cutoff for high frequencies 
•  Near a given frequency, there will be a number of 

combinations of k’s l,m,n for that frequency 

N k( ) = #pol states ×  volume of k-space octant
volume of unit k-space cell

= 2 1
8

4 / 3( )π k 3

π
Lx

× π
Ly

× π
Lz

= k 3

3π 2 V

Density of modes = density of states g k( )dk = 1
V
dN k( )
dk

dk = k2

π 2 dk

g ω( )dω = ω 2

π 2c3
dω g ν( )dν = 8π ν 2

c3
dνOther forms: 



Spectral energy density 
•  Generalize EM energy density to allow for spectral 

distribution 

–  Total energy density:  
–  Classical form: 

–  Problem: total energy is infinite! 
•  Planck: only allow quantized energies for each mode 

–  Now get average energy/mode with sum, not integral 
 

ρ ν( )dν = excitation energy per mode × density of modes

ρ ν( )dν = kBT
8πν 2

c3
dν

ρ ν( )dν∫

 E = n + 1
2( )hν

 
Pn =

e−En /kBT

e−E j /kBT

j∑ Mean photon number:   

n = number of photons in each mode 

n = nPnn∑



Blackbody spectrum 
•  Mean number of photons per mode:  

•  Spectral energy density of BB radiation: 
ρ ν( )dν = avg # photons per mode × hν per photon × density of modes

= 1
ehν /kBT −1

hν g ν( )dν = 8π ν 2

c3
hν

ehν /kBT −1
dν

n = nPnj∑ = 1 ehν /kBT −1( )



Wave propagation with absorption 
•  Consider light absorption from a thin slab 

•  Generalize to an equation for arbitrary length:  

•  Absorption coefficient (units m-1) is proportional to 
the number density of absorbers: 

–  N1 = number density (m-3) of species in level 1 
–  σ? Has units of m2, = “cross-section”  

I1 = I0 − I0α Δz

I1 − I0 = ΔI = −I0α Δz→ dI
dz

= −α I

I z( ) = I0 e−α z Beer’s Law 

α = N1σ



Models for σ: hard and soft spheres 
•  Consider an collection of “black” spheres that 

absorb if struck by a photon.  
•  Cross-section for absorption is just the projected 

area of the sphere. 
•  For an atom, the probability of absorption 

depends on how close the incident frequency is to 
resonance:    

σ = πa2

1 

2 

hν12 hν

Absorption lines are 
broadened, so exact 
energy is not required. 

σ →σ ν( )



Example: absorption of pump light in 
Nd:YAG 

•  Nd3+ is a 
heavy ion with 
many possible 
transitions 

•  Pump to 
anywhere 
above the 4F3/2 
level 



Absorption spectrum of Nd3+:YAG 

•  Optical density (OD) = -log10[T] 



Pump bands near 808nm 
•  Powerful laser diodes (LD) are available near 808nm 

•  Note: LD output wavelength depends on temperature, so 
this needs tuning and stabilization in real systems.  

3mm thick Nd:YAG crystal 
•  What % is absorbed at 

the peak (α=11/cm)? 

•  What is the OD? 

•  If NNd=1.38x1020/cm3 
(1% atomic), what is 
the absorption cross-
section?  



Transition rates 
•  We have been looking from of the point of view of 

the photons. What about the atoms?  
–  Absorption of a photon induces a transition from level 1 

to 2.  

–  The absorption rate W must depend on the intensity 
and the incident frequency. We’ll represent this by the 
spectral energy density.  

–  For light at a specific frequency, define 

–  Will generalize later for broadband light 

dN1

dt
= −N1W12

dN2

dt
= N2W21 = − dN1

dt

W12 = B12ρ ν0( ) B12 = Einstein “B” coefficient 



Spontaneous emission 
•  An atom in an excited state can decay to another 

level through radiation = spontaneous emission 

•  If there are multiple destination states, rates add. 
Total decay out of level i : 

•  Note this type of process is independent of any 
incident light.  

dN2

dt
= −N2A21→ N2 t( ) = N2 0( )e−A21t

dNi

dt
= − Aij

j
∑

Lifetime of state:  
τ 2 = 1/ A21

Lifetime of state:  

τ i = 1/ Aij
j
∑



Einstein’s treatment of emission and 
absorption 

•  Based on thermodynamic principles, Einstein 
predicted the existence of stimulated emission. 

•  First suppose we have only absorption and 
spontaneous emission. 

•  Rate equations for a two-level system: 

•  In equilibrium with the field, no net change in 
population densities 

dN1

dt
= −N1 B12ρ ν( ) + N2 A21

dN2

dt
= +N1 B12ρ ν( )− N2 A21

0 = −N1
e B12ρ ν( ) + N2

e A21→
N2

e

N1
e =

B12ρ ν( )
A21



Thermal equilibrium with BB field 
•  An atom that is in thermal equilibrium has 

populations that follow the Boltzmann distribution: 

•  A field in thermal equilibrium should have the  
blackbody spectral energy density 

–  What we have is ok in the high frequency limit, but not 
fully consistent with the BB curve.  

N2
e

N1
e =

g2
g1
e−hν21/kBT =

B12ρ ν( )
A21

→ ρ ν( ) = A21
B12

g2
g1
e−hν21/kBT

ρBB ν( ) = 8π ν 2

c3
hν

ehν /kBT −1



Stimulated emission 
•  Things make more sense if we allow for another 

route for decay from 2 to 1 

•  Solve for the equilibrium spectral energy density 

0 = −N1
e B12ρ ν( ) + N2

e B21ρ ν( ) + N2
e A21→

N2
e

N1
e =

B12ρ ν( )
A21 + B21ρ ν( )

N2
e

N1
e =

g2
g1
e−hν21/kBT =

B12ρ ν( )
A21 + B21ρ ν( )

g2
g1
e−hν21/kBT A21 + B21ρ ν( )( ) = B12ρ ν( )

ρ ν( ) = A21
B12

g1
g2
ehν21/kBT − B21



Einstein’s relations between A and B 
coefficients 

•  If both the atoms and BB cavity are in thermal 
equilibrium, the ρ(ν)’s that satisfy that constraint 
must be the same 

–  The two forms will have the same structure if 

–  So the processes of absorption and stimulated 
emission are linked. 

–  Finally, for   

ρBB ν( ) = 8π ν 2

c3
hν

ehν /kBT −1
ρ ν( ) = A21

B12
g1
g2
ehν21/kBT − B21

B12
g1
g2

= B21 → ρ ν( ) = A21
B21 e

hν21/kBT −1( )

ρBB ν( ) = ρ ν( )

A21 =
8π hν 3

c3
B21



Physical significance of A/B 
•  Dimensionally, B21ρ gives a rate, so in the relation 

between A and B, 
 
           is a type of spectral energy density. 
 
In QED, the E and B energy densities are 
quantized, and the quanta are the photons.  
 

  is effectively the spectral energy density 
of the vacuum fluctuations of the field.  

A21 =
8π hν 3

c3
B21

ρ ν( ) = 8π hν
3

c3

ρ ν( ) = 8π hν
3

c3



Connect intensity changes to atomic 
rates 

•  In a volume V, absorbed power is 
 
•  For a beam with area A, 

•  Intensity and energy density are related:   

dPa
dV

=W12N1hν

dPa
dV

= 1
A
dP
dz

= − dI
dz

ρ c = I

dPa
dV

= − dI
dz

= B12ρN1hν
dI
dz

= −I N1
B12hν
c

= −I N1σ 12

σ 12 =
B12hν
c

Will generalize this to account for lineshape of 
absorption, and bandwidth of source. 

Note that the mean free path of photons in the medium is 1/α 



Optical gain 
•  With population in both levels 1 and 2,  

dI
dz

= I N2 B21 −N1 B12( ) hν21
c

B12
g1
g2

= B21

dI
dz

= I N2 −N1
g2
g1

⎛
⎝⎜

⎞
⎠⎟
B21hν21
c

= I Ninvσ 21

Inversion 
density 

Gain 
cross-
section 

I z( ) = I0egz g: gain coefficient = Ninv σ21 
    (opposite sign from absorption coefficient) 

G0: small signal single-pass gain I L( ) = I0egL = I0G0

For an amplifier of length L,  



General conditions for steady-state 
inversion (gain) 

•  Consider general situation, including pumping 
rates R1, R2 and lifetimes τ1, τ2 

–  Lifetime of level 2 includes 1/A21, but also includes 
decay to other levels 

2 

1 
N2A21 

τ1 

τ2 

R1 

R2 

dN2

dt
= R2 −

N2

τ 2
dN1

dt
= R1 + N2A21 −

N1

τ1

Both rates go to zero in 
steady state 



Steady-state inversion 
•  Solve for inversion density 

 
•  For gain, 

0 = R2 −
N2

τ 2
→ N2 = R2τ 2

0 = R1 + N2A21 −
N1

τ1
→ N1 = R1τ1 + N2A21τ1

N1 = τ1 R1 + R2τ 2A21( )
N2

g2
> N1

g1
R2τ 2
g2

> τ1
g1

R1 + R2τ 2A21( )→ R2τ 2
g2

− R2τ 2A21τ1
g1

> R1τ1
g1

R2τ 2
1
g2

− A21τ1
g1

⎛
⎝⎜

⎞
⎠⎟
> R1τ1

g1

R2τ 2
R1τ1

g1
g2

1− g2
g1
A21τ1

⎛
⎝⎜

⎞
⎠⎟
>1



Interpretation of conditions for steady-
state gain 

•  Selective pumping: R2 > R1 
•  Favorable lifetime ratio: τ2> τ1 
•  Favorable degeneracy ratio: g1> g2 

•  Necessary condition:  
 

–  Lower level has to empty out faster than spontaneous 
emission fills it.  

–  No CW 3-level system, but transient pumping is ok 

R2τ 2
R1τ1

g1
g2

1− g2
g1
A21τ1

⎛
⎝⎜

⎞
⎠⎟
>1

A21 <
g1
g2
1
τ1


