


Simple scalar wave equation

o d 2 2
2" order PDE aazllf(z t)_i%w(z f)=0
 Assume separable solution w(z0)=f(z)g(t)
1 1 1 0
f( ) - t)=0
e ar

— Each part is equal to a constant A

1 0 11 9 _
f(z) 0z* H2)=4, c’ g(t) ot’ g(t) =4
1

f(z)zcos(kz)%—k = A, g(t)zcos(a)t)%—w ?zA

=+ : :
w=tkc Sin( ) also works as a second solution



Full solution of wave equation

 Full solution is a linear combination of both
v(z,t)= f(z)g(t)z(A1 coskz+ A, sinkz)(B1 coswt+ B, sina)t)
 Too messy: use complex solution instead:
v(z,t)= f( ) ( )=(A1€ikz + A e‘ikz)(B e + B e‘iwt)
w(z,)= AB" ™ + A B e 4+ 4B ) 1+ 4 B
— Constants are arbitrary: rewrite

Yy(z,t)= 4 cos(kz+a)t+¢l)+ A, cos(kz—a)t+¢2)



Interpretation of solutions

* Wave vector k:%
« Angular frequency =27V
* Wave total phase: D = kz — ot +¢
— “absolute phase™ ¢
— Phase velocity: ¢ D=hkz—kct+p=k(z—ct)+¢

® = constant when z = ¢t

V(z,t)= Alcos(kz+a)t+¢1)+ A cos(kz—a)t+¢2)

Reverse (to -z) Forward (to +z)



Maxwell's Equations to wave egn

« The induced polarization, P, contains the effect of the medium:

V-E=0 VxE_—a—B
ot
~ 1 OE oP
V:-B=0 V><B——— o
c* ot Ho ot
Take the curl:
- = d = o 1 dE oP
VX(VXE|=——VXB=— + U, —
(VxE)=—3 at(cz or arj

Use the vector ID:
Ax(BxC)=B(A-C)-C(AB)

—

?x(VxE\ ~V(V-E —(V?)E:—VZE

“Inhomogeneous Wave Equation”




Maxwell's Equations in a Medium

* The induced polarization, P, contains the effect of the medium:

 Sinusoidal waves of all frequencies are solutions to the wave equation

* The polarization (P) can be thought of as the driving term for the
solution to this equation, so the polarization determines which
frequencies will occur.

* For linear response, P will oscillate at the same frequency as the input.
P(E)=¢,xE

* In nonlinear optics, the induced polarization is more complicated:
P(E)=¢,(x"E+y"E + "B +..)

* The extra nonlinear terms can lead to new frequencies.



Solving the wave equation:
linear induced polarization

For low irradiances, the polarization is proportional to the incident field:
P(E)=¢xE, D=¢gE+P=¢,(l+y)E=¢E=nE

In this simple (and most common) case, the wave equation becomes:

. 10°E 1 0°E _ n* 0°E

V’E - = —VE-——=0
¢t ot A ot? ¢’ ot

Using: g i, =1/¢’ g, (1+x) =e=n’

The electric field is a vector )
function in 3D, so this is VE (r t)_n_a_E (r.f)=0
actually 3 equations: YA ’



Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y:

VE(z0) =L B(20) ¢ L () 2B (z0) =L B (=.0)

0x 0y 0z 0z
PE_ W PE _
dz° ¢ ot

The solutions are oscillating functions, for example
E(z,t)=XE, cos(k z—ot)
Where w=kc, k=27mn/A, v =c/n

This is a linearly polarized wave.



Complex notation for waves

* Write cosine in terms of exponential

E(Z,t) = )A(Ex Cos(kz — 0t + (p) — ’A(Ex %(ei(kz—a)t#f’) n e—i(kz—a)t+¢))

— Note E-field is a real quantity.

— It is convenient to work with just one part
+ We willuse ~ E,e™™®)  E =LlFE ¢*
e Svelto: o {Uke=ot)

— Then take the real part.
* No factor of 2

 In nonlinear optics, we have to explicitly include
conjugate term



Example: linear resonator (1D)

* Boundary conditions: conducting ends (mirrors)
E (z=0,)=0 E (z=L.t)=0

* Field is a superposition of +'ve and —'ve waves:
E (z,t)= A+e"("zz‘“’”¢+) + A elheor)

— Absorb phase into complex amplitude
E (z,t)= (Aﬁ”kzZ + A_e_ikzz)e_ia’t

— Apply b.c.atz=0

E (0,)=0=(A,+A )e™ > A =-A

+ =

E (z,t)=Asink_ze™



Quantization of frequency: longitudinal
modes
* Apply b.c. at far end
E(L.t)=0=Asink L e™ kL =In  [=12,3,

— Relate to wavelength:

2 Irm 7 = A Integer number of
z- 9 7 z - Y A half-wavelengths
A L. 2
— Relate to allowed frequencies:
w Ir C
—_—— vl —_f
c L, 2L,
— Equally spaced frequencies:
A — 1 Frequency spacing

2LZ T, = 1/ round trip time



Wave energy and intensity

* Both E and H fields have a corresponding

energy density (J/m?3)
) the energy

— For static fields (e.g. in
density can be calculated through the work

done to set up the field
p = %SE ? + % uH . éé'égDieIectric
— Some work is required to polarize the medium
— Energy is contained in both fields, but H field
can be calculated from E field

3

IO




Calculating H from E in a plane wave

* Assume a non-magnetic medium
E(z,t)=XE,_ cos(kz—wt)

. oB oH
VXE=—"—=—y ~—
8 ot Ho ot

— Can see H s perpendicular to E
X V 1z

y
=VxE=| 0, 9, 0. |=§0 E =-¥k E,sin(k z—wt)
E 0 0

oH

— Integrate to get H-field:

. 5’_[ kLEO Sin(kzz—a)t)dt —¢ kLEO [—cos(ki—wt)]
0 0 a




H field from E field

* H field for a propagating wave is in phase with E-

f|e|d Electromagnetic Wave
-<4— Magnetic Field (B)

Electric —
Field (E)

H=yH cos(kzz — (ot)

k Lf:;z,g_ A ‘
= 5’ = EO COS(kZZ — G)f) < " ; ':‘"’ Propagation
CO‘U e Direction
0 Wavelength (A) EEEi Sa

e, o

Figure 1

 Amplitudes are not independent

| 1
HO = — k = ng C2 = > =E,C
W, : ¢ Ho&, HyC
H =——FE =neck



Energy density in an EM wave

* Back to energy density, non-magnetic

p=%8E2+%‘LLOH2 H = necE
g=gn’
p=ten’E*+Lun’e’c’E’

uec’ =1
272 2 2 2
p=¢gn E"=€g,n"E" cos (kzz—a)t)

Equal energy in both components of wave



Cycle-averaged energy density

» Optical oscillations are faster than detectors
* Average over onle cycle:
T
(p)=€n’E,’ —J cos’ (kzz — a)t)dt

0
— Graphically, we can see this should = 7%

0.5 1.0 I.

— Regardless of position z




Intensity and the Poynting vector

* Intensity is an energy flux (J/s/cm?)
* In EM the Poynting vector give energy flux
S=EXxH

— For our plane wave,

S=EXH=E, cos(kzz — a)t)nSOcEO cos(kzz— a)t)ﬁ Xy

2 2 A
S = necE; cos (kzz — a)t)z

— Sis along k
» Time average: S=1ng,cEZ
* Intensity is the magnitude of S

1
[ =—ng,c
2

C
E(? :;p:Vphase p

Photon flux:

F=—




General 3D plane wave solution

* Assume separable function
E(x,y,2.0~ £(x) £ (») £,(2) ()

82 82 82 (Z f) _ n2 82

V’E(z,t)=—E(z,t)+—E(z,t)+=—E ——E(z.1)

0x dy 0z ¢ ot

« Solution takes the form:
E(x,y,z,t)=E, ik gy ikz jmion _ Eoei(kxx+kyy+kzz)e_iwt

E(x,y.2.1) = Eoei(kr—a)t)
— Now k-vector can point in arbitrary direction

e With this solution in W.E.:

2
a) . . .
=k ky2 +k2 =k k Valid even in waveguides
C and resonators




Grad and curl of 3D plane waves

« Simple trick:
V-E=0.E +0,E +0_E.
— For a plane wave,
V-E=i(k,E, +kE, +kE,)=i(k-E)

— Similarly,
VXE=i(kxE)
« Consequence: since V.E=0, kLlE

— For a given k direction, E lies in a plane

— E.g. x and y linear polarization for a wave propagating
In z direction



Writing electric field expressions: 1D

« Write a complex (phasor) expression for an E-field
linearly polarized in the x-direction, propagating in the z
direction. Frequency w, wavenumber K.

E(z,t) = E, exp(ikz—iwt)

« Write an expression for the field of a standing wave
(E=0 atz=0and z = L) and for the allowed k's.

E(z,t)=E,sin(k,z)exp(—iwt), withk, =nm/L



Writing expressions for waves: 3D

« Write an expression for a complex E-field as shown:

E(y 7 t) — F &ei(kysin0+kzcose—a)t)
9459 — 0

E(y,z,t)=E,|[ycos®—Zsin0] gk ysind+kzcos6-oi)



Interference in 2D

« Write an expression for the total field (sum of the fields as
shown. Assume equal amplitude fields.

Va\ y = _ 9 . o k 0_
E(y’z,t):EOX(eﬂkysmG P zkysme)el( zcos0-wt)

* Now write an expression for the intensity at z = 0. Just
write the peak intensity as |,,.

I(y,z,t)=1,cos (kysm@) [ +1,+I]1, cos(ZkysinH)



Closed box resonator: blackbody cavity

* Here we have a 3D pattern of standing waves

— Exact boundary conditions aren’t imp’t, but for
conducting walls:
« E=0 where field is parallel to wall
« Slope E=0 where field is perp to wall (charges can

accumulate there)

— Example standing wave solution:
E (x,y,z) = A _cosk x sinkyy sink_z

» Cos( ) function along field direction S L

— Others:
E (x,y,z) = A, sink xcosk ysink z

E (x,y,z) = A_sink x sk ycosk z

z



Discrete wavevectors

* Discrete values of k:

kx — l_ﬂ: ky = m—ﬂ: kz — ﬂ
L L, L.
* With these solutions in the wave equation
2
)]
— =k, +k; +k. =k-k 2 allowed polarizations

C

— k’s are discrete, so there are discrete allowed
frequencies:

2 2 2
a),mn:c\/kj+k2+kj=c Im) jme|  jne
: L, L, L,
] 2 2 2
vlmn:i\/kf+k2+kf:c L
27 : 2L, ) \2L,) 2L,




Field in equilibrium with walls: classical

* Hold cavity walls at temperature T
« What is probability that a mode will be excited?

» Classical view (Boltzmann):  P(&€)<e®"

— assume the amount of energy in each mode can take any
value (continuous range) this is wrong!

— average energy for each mode is

oo

[gP(g)as [ge"ag
(g)=" =0 = kT

(e ]

Tp(g)dg J‘e—s/krdg

0 0
— Note: this is not kT/2 as in equipartition of K.E. There,
integrate on velocity, which ranges — to +




Density of states

For a given box size, there is a low frequency cutoff but no
cutoff for high frequencies

Near a given frequency, there will be a number of
combinations of k's I,m,n for that frequency

volume of k-space octant

di N (k) = #pol states X .
volume of unit k-space cell
4/3)k’ ’
:2175 /727t - k2V
" s o, W 3r
” L. L, L
1 dN(k k?
Density of modes = density of states g(k)dk = V%dk =—dk

T

2.3
C



Spectral energy density

« Generalize EM energy density to allow for spectral
distribution

p(v)dv = excitation energy per mode X density of modes

— Total energy density: Jp(v)dv
— Classical form:

8V’
C3

dv

p(v)dv =k,T

— Problem: total energy is infinite!
* Planck: only allow quantized energies for each mode
E=(n+%)hv n = number of photons in each mode
— Now get average energy/mode with sum, not integral

Z Paiad Mean photon number: 7 = EnnPn
J

P =



Blackbody spectrum

 Mean number of photons per mode:

n=Y nb=1/("" 1)

« Spectral energy density of BB radiation:
p (v)dv = avg # photons per mode X hv per photon X density of modes

2E-16

Spectral density (J sm™)

0

1.5E-16 |

1E-16

5E-17

2
L (v)dv =8 v
T hlkgT 1 Vg 1% V=0OTT T kT 1 \% ‘
€ B c € - Toward the
"ultraviclet
catastrophe”
’8m- 2 Rayleigh-Jeans Law
5 kT
L Cc~
/SOOOK > X
4000 K 7 S
T + &
= 7
3| &
St Planck Law
(E I.Z‘)
g G 8]'{\' 2 iy
o« 4 Curves agree at o hy
00 10 20 30 40 50 { R e kT - 1
it
Energy (eV)

Frequency




Wave propagation with absorption

» Consider light absorption from a thin slab

[, =1,—1,0Az
* Generalize to an equation for arbitrary length:
dl
[ —1,=Al=-1,0Az > —=-0l
dz
[(z)=1,e* Beer’s Law

« Absorption coefficient (units m) is proportional to
the number density of absorbers:

oa=N,0
— N, = number density (m-3) of species in level 1
— 07 Has units of m2, = “cross-section”



Models for o: hard and soft spheres

« Consider an collection of “black” spheres that
absorb if struck by a photon.

« Cross-section for absorption is just the projected
area of the sphere. o =nrd’

* For an atom, the probability of absorption
depends on how close the incident frequency is to

resonance.

hv,,

Absorption lines are

broadened, so exact
Ly energy is not required.

oc—o(v)




Example: absorption of pump light in

“Ciir
20 - “Gon
7770 v +
| A « Nd**is a
T heavy ion with
6 — Pump .
I many possible
14 - AF  —eem=- 11507em™ R gt
—/ == e R transitions
. ‘Fy; ’,/’, | ' ' Laser
= 12f “Fa ///// | ! transition
f P * Pump to
2 ZE=—
-~ 10} / S ~ 6000 em™"
z P N i anywhere
& transition P UL
ST - above the 4F
o ///’// _ han 4:3::5‘ . — ~ 4000 cm™" i‘a 3/2
6 k- 152 - P T 1 | I
,/’// L 2514 eve
. //// '/,//’ | 2461
al 1312 - “I32 ‘;:zt | 214
//,/ §§ 1 31 Y3
- 2028 Y
KR ' 2002 ’
2 - |
L 4
. - 852 2,
9/2 G -7 311
oL B e REERES =200
~ 0132 Z,
Fig. 2.2. Energy level diagram of Nd:YAG. The solid line represents the major transition at 1064 nm, and

the dashed lines are the transitions at 1319, 1338, and 946 nm.



Optical density

Absorption spectrum of Nd3**:YAG
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Pump bands near 808nm

« Powerful laser diodes (LD) are available near 808nm

12

y A 3mm thick Nd:YAG crystal
3 / \ | « What % is absorbed at
=8 / X the peak (a=11/cm)?

S 6
3 \ |« Whatis the OD?
g 4
I /\J \ « If Nyg=1.38x102/cm?
] | (1% atomic), what is
802 804 806 808 810 812 the absorption cross-
Wavelength (nm) section?

* Note: LD output wavelength depends on temperature, so
this needs tuning and stabilization in real systems.



Transition rates

* We have been looking from of the point of view of
the photons. What about the atoms?

— Absorption of a photon induces a transition from level 1

to 2.
dN dN dN
dtl =-NW, dt2 =N,W, =- dtl

— The absorption rate W must depend on the intensity
and the incident frequency. We'll represent this by the
spectral energy density.

— For light at a specific frequency, define
W, = Blzp(vo) B, = Einstein “B” coefficient
— Will generalize later for broadband light



Spontaneous emission

* An atom in an excited state can decay to another
level through radiation = spontaneous emission
dN,

” — _N2A21 —> N, (t) =N, (O)e_Amt Lifetime of state:

T,=1/A,

* |f there are multiple destination states, rates add.

Total decay out of level / : L
Lifetime of state:
dN .
5

d—l:_ZAij Ti=1/ZAij
J J

* Note this type of process is independent of any
incident light.



Einstein’s treatment of emission and

absorption

Based on thermodynamic principles, Einstein
predicted the existence of stimulated emission.

First suppose we have only absorption and
spontaneous emission.

Rate equations for a two-level system:

dN dN
dtl tz =+N, Blzp(v)_Nz Ay

=-N, Blzp(V)+N2 Ay

In equilibrium with the field, no net change in
population densities

Nze _ Bl2p(v)

Nle - A21

0=-N/ Blzp(V)+N2€ Ay —



Thermal equilibrium with BB field

* An atom that is in thermal equilibrium has
populations that follow the Boltzmann distribution:

N2: _& okl _ B12P(V) > p(V) _ ﬁ&e—hvm/kBT
Ny g A, B, g

A field in thermal equilibrium should have the
blackbody spectral energy density

v: hv

Pss (V) =87 o3 oMk

—1

— What we have is ok in the high frequency limit, but not
fully consistent with the BB curve.



Stimulated emission

* Things make more sense if we allow for another
route for decay from 2 to 1

NZe _ Bl2p(v)

O:_NleBl2p(v)+N2eB21p(v)+N2eA2l >Ne A + B p(V)
1 21 21

N; _& o alksT _ Blzp(v)
Ny g Ay + lep(V)

« Solve for the equilibrium spectral energy density

%e_hvm/kﬂ (A21 T lep(v)) =B,p(V)
1
Ay

V)=
P( ) B &ehvﬂ/kBT_B
12 21

82



Einstein’s relations between A and B

coefficients

* |If both the atoms and BB cavity are in thermal

equilibrium, th

e p(v)'s that satisfy that constraint

must be the same

Pgs (V) =87 o3 Ik

8
B, > = B,

A
v:i o hy P(V):: 2, hle
—1 B,=—e"" =B,
8>
— The two forms will have the s:fme structure if
— p(v)= <l
P ( ) le ( ehvzl/kBT _ 1)

82

— So the processes of absorption and stimulated
emission are linked.

— Finally, for pg(v)=p(v)

SThy’
C3

Ay = B,




Physical significance of A/B

* Dimensionally, B,,p gives a rate, so in the relation

between A and B, | ST hv’
21 =

BZI

3
C

p(v)= 87”?3 IS a type of spectral energy density.

C

In QED, the E and B energy densities are
quantized, and the quanta are the photons.

8Thv’
p(v)= ﬂcgv Is effectively the spectral energy density

of the vacuum fluctuations of the field.




Connect intensity changes to atomic

rates

. dP
* |n a volume V, absorbed power is d‘; =W,,N,hv

dp, 1dP _ dI

 For a beam with area A, :

dV_Adz_ d_Z

- Intensity and energy density are related: pc=1

dP dl

7 B,,hv

“=_——=PB_pN hv —=—IN =—INCO

dVv dz 2Py dz . 1012

. = B,hv Will generalize this to account for lineshape of
12 C absorption, and bandwidth of source.

Note that the mean free path of photons in the medium is 1/a



Optical gain

* With population in both levels 1 and 2,

dl hv &1 _
- I(N,B, —N,B,)—2 B, 0 B,,
7 B, hv
—=1 Nz_ngZ = 21:1Ninv621
dz 81 ¢
Inversion Gain
density Grosies
section
I(Z) = [ e*’ g: gain coefficient = N. , 0,

For an amplifier of length L,

I(L)=1,*"=1,G,

(opposite sign from absorption coefficient)

G,: small signal single-pass gain



General conditions for steady-state
inversion (gain)
« Consider general situation, including pumping
rates R,, R, and lifetimes 14, T,

. 2
NLA,, T2

v
R1/ 1 \ .
— Lifetime of level 2 includes 1/A,,, but also includes
decay to other levels

dN, N,
dr T, Both rates go to zero in
steady state
dN, 1 d
=R +N,A) ——




Steady-state inversion

« Solve for inversion density

N
0=R,———>N,=R71,
T2
Nl
O=R +N,A,, ——> N, =R71,+N,A,T,

Tl
N, =7,(R + R,T,A,))

* Forgain, v, N
82 &

R,7, _ R,7,A, T, > R T,

K >4 (R +R,T,A,,) >

82 81 82 81 81

R T
Rﬂz[ 1 _A2171]>R17:1 )by 8 (1—&A217,'1]>1
8- 81 8 Rt &, 81




Interpretation of conditions for steady-
state gain

R,7, &, [1_&
R7, g,

AZITI] > 1

81

Selective pumping: R, > R,
Favorable lifetime ratio: 7,> 1,
Favorable degeneracy ratio: g,> g,

Necessary condition: g 1
A21 < o1 _—
8, Ty

— Lower level has to empty out faster than spontaneous
emission fills it.

— No CW 3-level system, but transient pumping is ok



