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But by the divergence theorem, the first term may be converted to o surface integral that
vanishes because the field and the potential both vanish at infinity. To evaluate the second
term, we use (3.7) und Gauss's law 1o get

l ripir .
1"1" = :} [ﬂ{r}d:"“'] Ef‘l’ =5 ; [f ﬂ{ ]ﬂ{ _.:.b d"rdir' l].z“

4 egr — |

That is, the total energy is half the potential energy of each of the LI"I"I[’L,E\ in the field of all
the other charges, We see from the last form of the integral that the factor {1 appears because
the integral “double counts” the interaction of each charge with the other charges.

For point charges we run into some difficulty, because the potential & i5 infinite at the
position of the point charge. That is, point charges have infinite self-energy in the electric
field. For now, we ignore the (infinite) self-energy of the particles and calculate the energy
of interaction in the following way. If we begin with a charge g, at position ry and bring up
another charge > from infinity to position rz, the amount of work done on charge ¢ is just
the potential energy of charge g, in the field of charge g,

iz

B — (3.28)
daweg vy - 12l

Wh =

If we now bring up, in succession, charges gi. gs, and so on, the work done on each
charge is

. qidj
W, = SE—— {329
E. dmepr — 1l

where the sum is over the previous charges j = i, and the total work done is

= g4 L _
¥ Z Z dreglr; — L Z 4TF‘1:,|1-?1_' rf| (3,30
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when we “double count” the interactions. Therefore, the total energy of the assembly of
point charges. relative to their energy at infinite separation, may be expressed in the form

I
- EEq‘¢‘ i3.31)

where the potential at position r;,

Z - (3.32)
4m¢|r,. = r,I

Jali

i due to all the other charges. These expressions are analogous 1o (3.27), except that they
discard the (infinite) sell-energy of the point charges.

3.1.3 Multipole Moments

For localized charge distributions, such as atoms and nuclei, the field at a point far from the
charges may be expanded in inverse powers of the distance from the charges, and the co-
efficients in this expansion are called the multipole moments of the charge distribution. The
interaction of the charge distribution with externally applied fields can also be expressed in
terms of the same multipole moments, making them convenient for a variety of different
problems. For example, the hydration of ions in water is the result of the interaction
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Figure 3.2 Potential surrounding a charge distribution.

hetween the charge on the ion and the dipole moments of the water molecules. Also, the
ohservation of a finite electric quadrupole moment for a deuteron shows that it is prolate,
or egg-shaped. rather than spherically symmetric.
As we have seen, the potential at point r due to a charge distribution p(r') is
1 ird'r
d(r) = —— "U..J_._

(333
A ey e~

If the source is localized near the origin and the field point r is a large distance away, as
shown in Figure 3.2, it is useful to Taylor expand the reciprocal of the radius

. I I
fir)=—=— — S
r=rl Jx—xP + -y’ )
as a function of ¥ for r' < r. The Taylor series for a function of three variables may be
expressed in the form

(3.34)

1

3 - T .
e f . - fl 'le | I ™y I']-j |
fir' =} + r— + = rr b 13.35)
=0 ; ilpog 2 ,-;. Par]arl e
If we differentiate (3.34) we find, after some algebra, that
fir) = - (3.36)
p==ll
il i
,—f, = r— (3.37)
ﬁrr' 'l rl‘
A f I — b
‘_r . :f._l = Lq r..J I-'l-_:““:}
dr dr .y r

and so on, Therefore, at large distances from the localized charge distribution the poten
tial is

I * o .
Py = | —pirrd'r o i yd'r
O

~ Arir; - rzF:F . .
<+ — Z 'r'— irf;ﬁ'{l'l d-"r b oo (1,30}
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But the summations and all factors of r may be moved outside the integrals over r'. We also
note that for i = 7 the last term vanishes since

K]
E (3, —ri =10 (140
i=1

for any r. Therefore, in the third term of {3.3%) we may add 1o the factor rir; inside the in-
tegral anyvthing multiplied by &,;. Specifically, we add —ir“@,-, to symmetrize the depen-
dence of this term on r and ', We then find that the potential is given by the series

3
f i 1; - ﬁ 1
B(r) = — Q Z Qu; Orir, r— 4+ - (3.41)
41"!-'{'[; ' =1 |
I= r;
where the multipole moments of the charge distribution are

0 '_f:”{r’hf"r’ 13.42)
O = fr:p{rr}d'l'rr = p (343
=f{3r;r: r"‘zﬁ.-,Jp[r']d‘r' i3.44)

and so on. The first term, the monopole moment, is just the total charge. The second term
is called the dipole moment p, and the third is the quadrupole moment. OF the nine com-
ponents of the quadrupole moment, only five are independent. Symmetry (@ = )
reduces the number of independent components to six, and since the trace vamshes,

3 1
X Oy = Zf (3riry —rpicd’r =0 (345
i=l i=l|

by (3.40), we see that the third diagonal component is dependent on the other two. Beyond
the guadrupole moment the multipele expansion (3.41) becomes increasingly cumbersome.

In addition to using a multipole expansion to calculate the potential outside a local-
ized charge distribution, the multipole expansion can be used to compute the energy
W= [ pir) ®(r) d*r of a localized charge distribution in an externally applied potential &
MNear the origin, the potential & may be Taylor expanded in the form

L g 1 i
-Iln - +EZr,r-—

[y (3460
=1 e Pyt e,

P(r) =

But the externally applied potential (the potential in the absence of the lncal charge distri-
bution) satisfies the Laplace equation

i HQ¢
ey dr,

=10 (147}

s0 in the third term of (3.46), we may add o the factor r,r, anything multiplied by 4;; and
the sum is unchanged. Specifically, we add _lirzt’:i,-j, in which case the energy of the charge
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distribution in the externally applied field becomes

LA L 1o |
W= | dirypind'r= 'd.}l j ) — + - i + .-
f i Q [e=0 ' =1 ( ';]r.l rasll b ,-_JZ_| Q ! '-;']rl ﬁ"_l' |r ]
[3.4H)
In terms of the applied electric field E = Vb, this becomes
W = @@ —p- E) l 2: 0, |+ {3.49
_ F p - '.J — Ly E]rl |!I=” - .I

We see from this that the total charge ) interacts with the potential at the origin, the dipole
moment p interacts with the electric field, and the quadrupole moment ¢y interacts with
the gradient of the field. The net force on a rigid charge distribution, such as a quantum-
mechanical atom or molecule, is found from the gradient of the energy. Thus.

) gt ) 2 3E;| | o AE; | ;
Fu= are QELO) + ; ™ |,=1, - 6 jz ﬂ”.‘fr. AR (330
The net force on a localized charge distribution is proportional to the total charge times the
electric field, the dipole moment times the derivative of the electric field, the quadrupole
moment times the second derivative of the electric field, and so on. If the charge distribu-
tion is not perfectly rigid, so that a dipole or higher order moment can be induced by the
external field, then the situation becomes more complex. This is discussed in Chapters 6
and 7.
Some examples can make these notions clearer. Consider the interaction of two
dipoles, p, and p2. the first at the origin and the second at point r, as shown in Figure 3.3,
The potential at point r due to the dipole p, at the origin is

i=1

lp-r
Pira) = ——7— (351
(ra dnm P ]
and the electric field is
! pir P
E=-V& = —|3}—Fr—— 152
4:rE4]( r r? (3.32)
The energy of interaction is then
|. - P ‘T 7 -
We-—E p=—— [E_‘ L2 3'{1]'_'.59-_r]'] (3.53)
4 ey r r
FJ Figure 3.3 Interaction between wo dipules.
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Figure 3.4 Interaction of a charge distribution with a point
charge.

X

The energy is lowest when the dipoles are both oriented in the same direction parallel or
antiparallel o the vector r that separates them.

As another example, we consider the interaction of a charge distribution located near
the origin with a point charge gy located at position ry, as shown in Figure 3.4, We assume
in the following that the total charge and dipole moment of the localized charge distribu-
tion vanish, so the quadrupole components are the first nonvanishing moments. If we make
the distribution symmetric about the x axis and use the fact that the trace of Oy vanishes,
then the quadrupole moments are

O —j (3x* — #prdr (3.54)
Qn=0u=—50n (3.55)
=10, fori # (3.56)

For any other orientation of the charge distribution, the quadrupole moment matrix can be
found by a rotation of coordinates, if desired. However, this is not necessary, since the en-
ergy clearly depends only on the angle # between the axis of the spheroid and the radius
vector ry, From (3.48) we see that the dominant term in the interaction energy {the quadru-
pole term) s

| < AE; On{iE, 1AE, 10E."
W= —- e =-----—(—"———-‘- ] (1.57
6 ..fZ=| G ari |y 6 \dr 2 ay 2 iz :
But
F = g r—to i3,58)
ey v — ol
hinl
A E; g, |
o= 4:; (—-‘—“ —~ 7) (1.59)
ar; =1 o Fiy
and the interaction energy 15
W= M M - g.l__l.ﬁ'u Jeos” — ] {3600

16 £n .F& dor Eqy r('-:

To make this example more concrete, we consider an atomic system consisting of a posi-
tively charged nucleus at the origin (effectively a point charge) surrounded by a negative



charge distribution created by the clectrons, 11 the negative charge distribution of the eles-
troms i prolate tepg shapedi. then the quadrpele moment of the atem is negative,
(= 0. In this case the lowest energy oveurs for i= hand @ — =, s0 the atom tends Lo
line up parallel the electric feld of the poant charge. 1 the charge distribution is oblate
(pancake shaped, then € 00 I this case the lowest energy aeeurs ford = w2, and the
atom tends 1o align ils symmetry axis normal e the field

EXERCISE 3.3
Molecular interactions are frequently interpreted in terms of multipoles.

(@) What is the energy of interaction between a dipole and a point charge?

(b} It is found experimentally (in molecular-beam experiments) that the bond energy
between a water molecule (p = 6.2 x 1073 C-m) and a Mg* ion is 1.7 » 107 =
with a bond length of 2.0 » 107" m. How does this compare 10 the charge~dipole
interaction? Draw a graph of the inleraction energy as 4 function of the bond length
including the expected shorl-range repulsion, and use this to explain the difference
hetween the charge—dipole inleraction energy and the measured bond energy.

EXERCISE 3.4

Consider a molecule at the the origin with axial symmetry about the x axis having no net
charge or dipole moment, but a quadrupole moment ;. The molecule interacts with a

Chargl.' oy at Pﬂiﬂt Py = (M. 9“1 il
{a) Show that the force on the guadrupole is
f}q“ Q 11

| T +'r_~r:,'

F= [{1+ Seos” )y — 2eos %] (3.61)

(b) Show that the torque on the guadrupole is

T = — 7 CO8 Hy 510 By (3.62)

EXERCISE 3.5

When a spherically symmeiric atom is placed in an electric field, the charge distribution

distorts to form a dipole moment. In the linear approximation, the induced dipole moment is

p=cak (3.63)

where o is the atomic polarizability. i

(a) Show that relative to infinity (where the externally applied field is assumed (0
vanish), the energy of the atom in the electric field E is

W= — %f_-“ EMV (3.64)
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where L is the energy density of the electric field and
V= [3.05])

is a volume that is typically of the order of the volume of the atom. Thus. neutral
atoms are drawn into regions where the electric field is highest

‘T'he atom can be represented crudely by a nucleus surrounded by a rigid, uniform,
spherical distribution of negative charge of radius o, such that the nucleus can be
pulled off center by the externally applied electric field against the restoring force
uf the spherical charge distribution itself. Compute the restoring electric field felt
by the nucleus inside the uniform negative charge distribution, and show that for
this simple atomic model the polarizability is

o = darepe’ [3.66)

E 3.6

The long-range interaction between atoms and molecules is dominated by the electrostatic

interact

ric atoms or molecules, the interaction is called the van der Waals attraction and has an r

ions between their multipole moments. In the case of neutral, spherically symmet-
fh

dependence on the separation r between the atomic centers. Classically, this is interpreted

as the i

nteraction between a fluctuating dipole moment in one atom that induces a dipole

moment in the other atom, and vice versa. Although the average fluctuating dipole moment
of a spherically symmetric atom vanishes, the mean square fluctuation does not.

(a)

ih)

(ch

Show that the instantaneous electric field of dipole | (located at the origin) is
1 -
Eir) = -V&, = ———[3(p, - OIF -~ pul (3.67)
dar Egr

The dipole moment induced in atom 2 (located at r) is then p; = a:Kq(r), where
wy is the molecular polarizability.
The energy of the induced dipole in the electric field of atom | is W = —p2 - E/(r).
Show that the instantaneous energy of the dipole-dipole interaction is

We ——t| + 3py - 87 1.68)

f = P P11 - -F)” i3,
{‘1’-ﬂ.’7(3}‘ .F'ﬁ ¥ P pl

Average this over a time that is long compared with the fluctuations of p;. and add
the effects of the fluctuating dipole moment of atom 2 on atom 1 to show that the
total interaction énergy is

o {pil + efp3)

ivu}ﬂﬂul - R‘T-‘.l'-':‘}"'::'
: i}

[3.69)

where the brackets indicate a time average, This 1s negative, showing that the van
der Waals interaction 1s atfractive.



