Systems of Linear Equations : Algebra, Geometry, Row-Reduction, Determinants, Transformations
Text: 7.1-7.3, 7.5, 7.7-7.8
Lecture Slides: 2-4

Quote of Homework One			
Paul Atreides: Fear is the mind-killer. Fear is the little-death that brings total obliter- ation.			
Frank Herbert : Dune (1965)			

1. Matrix Multiplication

Define the commutator and anti-commutator of two square matrices to be,

$$
\begin{aligned}
& {[\cdot, \cdot]: \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}, \text { such that }[\mathbf{A}, \mathbf{B}]=\mathbf{A B}-\mathbf{B A}, \text { for all } \mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n},} \\
& \{\cdot, \cdot\}: \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}, \text { such that }\{\mathbf{A}, \mathbf{B}\}=\mathbf{A B}+\mathbf{B A}, \text { for all } \mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n},
\end{aligned}
$$

respectively. Also define the Kronecker delta and Levi-Civita symbols to be,

$$
\begin{aligned}
& \delta_{i j}: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}, \text { such that } \delta_{i j}= \begin{cases}1, & \text { if } i=j, \\
0, & \text { if } i \neq j\end{cases} \\
& \epsilon_{i j k}:(i, j, k) \rightarrow\{-1,0,1\}, \text { such that } \epsilon_{i j k}=\left\{\begin{array}{cc}
1, & \text { if }(i, j, k) \text { is }(1,2,3),(2,3,1) \text { or }(3,1,2), \\
-1, & \text { if }(i, j, k) \text { is }(3,2,1),(1,3,2) \text { or }(2,1,3), \\
0, & \text { if } i=j \text { or } j=k \text { or } k=i
\end{array}\right.
\end{aligned}
$$

respectively. Also define the so-called Pauli spin-matrices (PSM) to be,

$$
\sigma_{1}=\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\sigma_{y}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\sigma_{z}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

1.1. The PSM are self-adjoint matrices. Show that $\sigma_{m}=\sigma_{m}^{\mathrm{H}}$ for $m=1,2,3$.
1.2. The PSM are unitary matrices. Show that $\sigma_{m}^{2}=\mathbf{I}$ for $m=1,2,3$ where $[\mathbf{I}]_{i j}=\delta_{i j}$.
1.3. Trace and Determinant. Show that $\operatorname{tr}\left(\sigma_{m}\right)=0$ and $\operatorname{det}\left(\sigma_{m}\right)=-1$ for $m=1,2,3$.
1.4. Anti-Commutation Relations. Show that $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \mathbf{I}$ for $i=1,2,3$ and $j=1,2,3$.
1.5. Commutation Relations. Show that $\left[\sigma_{i}, \sigma_{j}\right]=2 \sqrt{-1} \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k}$ for $i=1,2,3$ and $j=1,2,3$.

2. Solutions Sets to Linear Systems of Algebraic Equations

Given,

$$
\left.\begin{array}{cc}
\mathbf{A}_{1}=\left[\begin{array}{rr}
1 & -3 \\
-1 & 0 \\
-1 & 5 \\
0 & 1
\end{array}\right]
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{rrr}
6 & 18 & -4 \\
-1 & 3 & 8 \\
5 & 15 & -9
\end{array}\right], \quad \mathbf{A}_{3}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 1 & -1 \\
1 & 0 & 3
\end{array}\right], \quad \mathbf{A}_{4}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right], \quad \mathbf{A}_{5}=\left[\begin{array}{r}
5 \\
3 \\
-4 \\
7 \\
9
\end{array}\right], ~\left(\begin{array}{l}
20 \\
4 \\
11
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right], \quad \mathbf{b}_{4}=\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right], \quad \mathbf{b}_{5}=\left[\begin{array}{l}
22 \\
20 \\
15
\end{array}\right] .
$$

2.1. Algebra. Find all solutions to $\mathbf{A}_{i} \mathbf{x}=\mathbf{b}_{i}$ for $i=1,2,3,4,5$.
2.2. Geometry. Describe or plot the geometry formed by the linear systems and their solution sets.

Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

3.1. Matrix Inverse: Take One. Find \mathbf{A}^{-1} using the Gauss-Jordan Method. (pg.317)
3.2. Matrix Inverse: Take Two. Find \mathbf{A}^{-1} using the cofactor representation. (Theorem 2 pg .318)
3.3. Solutions to Linear Systems. Using \mathbf{A}^{-1} find the unique solution to $\mathbf{A x}=\mathbf{b}=\left[b_{1} b_{2} b_{3}\right]^{\mathrm{T}}$.

4. Determinants

Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]
$$

4.1. Vandermonde Determinant. Show that the $\operatorname{det}(\mathbf{A})=(c-a)(c-b)(b-a)$.
4.2. Application. Determine which of the following sets of points can be uniquely interpolated by the polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$.

$$
\begin{aligned}
& S_{1}=\{(1,12),(2,15),(3,16)\} \\
& S_{2}=\{(1,12),(1,15),(3,16)\} \\
& S_{3}=\{(1,12),(2,15),(2,15)\}
\end{aligned}
$$

5. Rotation Transformations in \mathbb{R}^{2} and \mathbb{R}^{3}

Given,

$$
\mathbf{A}(\theta)=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

5.1. The Unit Circle. Show that the transformation A $\hat{\mathbf{i}}$ rotates $\hat{\mathbf{i}}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$ counter-clockwise by an angle θ and defines a parametrization of the unit circle. What matrix would undo this transformation?
5.2. Determinant. Show that $\operatorname{det}(\mathbf{A})=1$.
5.3. Orthogonality. Show that $\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{A A}^{\mathrm{T}}=\mathbf{I}$.
5.4. Rotations in \mathbb{R}^{3}. Given,

$$
\mathbf{R}_{1}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right], \quad \mathbf{R}_{2}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad \mathbf{R}_{3}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Describe the transformations defined by each of these matrices on vectors in \mathbb{R}^{3}.

