MATH-332: Linear Algebra
Chapter: 5

Eigenvalues and Eigenvectors

Section 5.5: Applications to Differential Equations

pgs. 353-361
July 22, 2009

	Lecture: Applications to Differential Equations
Topics:	Systems of Linear Ordinary Differential Equations Matrix Exponentiation Decoupling \& Diagonalization \& Change of Variables
Problems	Prac: 1,2 Prob: $3,5,9$

Section Goals

- Understand $n^{t h}$ order constant-linear ODE's can be solved using eigenvalues and eigenvectors.

Section Objectives

- Starting with an $n^{t h}$ order linear ODE, derive a system of n-many first order equation of n-variables, which reformulates the linear ODE as a matrix ODE.
- Show that the general solution of a constant linear system can be expressed using a matrix exponential.
- Using the matrix exponential formalism show that the general solution to the system can be expressed in the eigenbasis using a linear combination of eigenvectors and eigenfunctions.
- Using diagonalization techniques show how the system decouples when transformed to the eigenvector basis.

