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whence the required capacitance is

C=Co+a’e (e, ~¢,)/(2e, +,)h.

§13. Dielectric properties of crystals

In an anisotropic dielectric medium (a single crystal) the linear relation between the
electric induction and the electric field is less simple, and does not reduce to a simple
proportionality.

The most general form of such a relation is

D; = Dg; + ¢, E,, (13.1)

where Dy is a constant vector, and the quantities ¢,, form a tensor of rank two, called the
permittivity tensor (or the dielectric tensor). The inhomogeneous term D, in (13.1)does not,
however, appear for all crystals. The majority of the types of crystal symmetry do not admit
this constant vector (see below), and we then have simply

D; = e, E,. . (13.2)
The tensor ¢, is symmetrical:

£y = E4e (13.3)

In order to prove this, it is sufficient to use the thermodynamic relation (10.10) and to
observe that the second derivative —4a62F/@E,OE, = 8D,/E, = ¢, is independent of the
order of differentiation.

For F itself we have (when (13.2) holds) the expression

F=Fy—¢,EE, /87 (134)
The free energy F is
F=F+ED,/4n = Fy+¢ ', D,D,/8n. (13.5)

Like every symmetrical tensor of rank two, the tensor &, can be brought to diagonal
form by a suitable choice of the coordinate axes. In general, therefore, the tensor £, Is
determined by three independent quantities, namely the three principal values 'V, ¢2 ¥,
All these are necessarily greater than unity, just as ¢ > 1 for an isotropic body (see §14).

The number of different principal values of the tensor ¢, may be less than three for
certain symmetries of the crystal.

Incrystals of the triclinic, monoclinic and orthorhombic systems, all three principal values
are different; such crystals are said to be biaxial.t In crystals of the triclinic system, the
directions of the principal axes of the tensor ¢, are not uniquely related to any directions in
the crystal. In those of the monoclinic system, one of the principal axes must coincide wita
the twofold axis of symmetry or be perpendicular to the plane of symmetry of the crystal.
In crystals of the orthorhombic system, all three principal axes of the tensor ¢, are
crystallographically fixed.

Next. in crystals of the tetragonal, rhombohedral and hexagonal systems, two of the

t This name refers to the optical properties of the crystals; see §§98, 99.
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three principal values are equal, so that there are only two independent quantities; such
crystals are said to be uniaxial..One of the principal axes coincides with the fourfold,
threefold or sixfold axis of crystal symmetry, but the directions of the other two principal
axes can be chosen arbitrarily.

Finally, in crystals of the cubic system all three principal values of the tensor ¢, are the
same, and the directions of the principal axes are entirely arbitrary. This means that the
tensor &, is of the form &d,,, i.c. it is determined by a single scalar ¢ In other words, as
regards their dielectric properties, crystals of the cubic system are no different from
isotropic bodies. )

All these fairly obvious symmetry properties of the tensor ¢,, become particularly clear if
we use a concept from tensor algebra, the tensor ellipsoid, the lengths of whose semiaxes are
proportional to the principal values of a symmetrical tensor of rank two. The symmetry of
the ellipsoid corresponds to that of the crystal. For instance, in a uniaxial crystal the tensor
ellipsoid degenerates into a spheroid completely symmetrical about the longitudinal axis; it
should be emphasized that, as regards the physical properties of the crystal which are
determined by a symmetrical tensor of rank two, the presence of a threefold or higher axis
of symmetry is equivalent to complete isotropy In the plane perpendicular to this axis. In
cubic crystals, the tensor ellipsoid degenerates into a sphere.

Let us now examine the dielectric properties of crystals for which the constant term D,
appears in (13.1). The presence of this term signifies that the dielectric is spontaneously
polarized even in the absence of an external electric field. Such bodies are said to be
pyroelectric. The magnitude of this spontaneous polarization is, however, in practice
always very small (in comparison with the molecular fields). This is because large values of
D, would lead to strong fields within the body, which is energetically very unfavourable
and therefore could not correspond to thermodynamic equilibrium. The smallness of D,
also ensures the legitimacy of an expansion of D in powers of E, of which (13.1) represents
the first two terms.

The thermodynamic quantities for a pyroelectric body are found by integrating the
relation — 4ndF /OE; = D, = Dy, + ¢, E,, whence

F = Fy— e, E.E,/8n — E,Dy, /4n. (13.6)
The free energy is
F=F+ED/4n = Fy+¢,E,E [8n
= Fy+&7 1, (D;— Do (D, — Dg,)/8n. 13.7)

It should be noted that the term in £ linear in E; does not appear in F.t
The total free energy of a pyroelectric can be calculated from formula (11.12) by
substituting (13.7) and (13.1). If there is no external field, € = 0, and we have simply

F =J [Fo—(E - Dy/8n)]1dV. (13.8)

It is remarkable that the frec energy of a pyroelectric in the absence of an external field
depends, like the field E, not only on the volume of the body but also on its shape.

t 1t should also be noted that in these formulac we neglect the piezoelectric effect, i.e. the effect of internal
stresses on the clectric properties of a body; see §17. The formulae given here are therefore, strictly speaking,
applicable only when the ficlds are uniform throughout the body, and internal stresses do not arise.
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an ellipsoid with semiaxes a//e™, a/ /&7, a/ /", Let n™), n” n*! be the depolarizing factors of such an
ellipsoid (given by formulae (4.25)). Applying fon:nula (8.7) to the field of this ellipsoid, we obtain the relation

(] (x) il (e}
u _"u:))a_¢~ n_. %. =é£_

ax' o éx 8x'

and similarly for the ' and 7 directions. Returning to the originat coordinates, we have 3¢/dx’ = _/e™36/d
= —/€"E,, s0 that the field in the cavity is ¢ Venaslex

Eu‘l = 8(!# (e)

x g1 g (gl ) E x

§14. The sign of the dielectric susceptibility

To elucidate the way in which the thermodynamic quantities for a dielectric in a field
depend on its permittivity, let us consider the formal problem of the change in the electric
component of the total free energy of the body when £ undergoes an infinitesimal change.

For an isotropic (not necessarily homogeneous) body we have by (10.20) # ~ #,
= {(D*/8ne)dV. When & changes, so does the induction, and the variation in the free

energy is therefore
D-éD D?
OF = V—
j - d anez oedV.

The first term on the right is the same as {10.2), which gives the work done in an
infinitesimal change in the field sources (i.c. charges on conductors). In the present case,
however, we are considering a change in the field but no change in the sources. This term
therefore.vanishes, leaving

OF = ~ [(5e/e*ND?*/8m)dV = — [ Se(EY/8m)d V. (14.1)

From this formula it follows that any increase in the permittivity of the medium, even if
in only a part of it (the sources of the field remaining unchanged), reduces the total free
energy. In particular, we can say that the free energy is always reduced when uncharged
conductors are brought into a dielectric medium, since these conductors may (in
electrostatics) be regarded as bodies whose permittivity is infinite. This conclusion
generalizes the theorem (§2) that the energy of the electrostatic field in a vacuum is
diminished when an uncharged conductor is placed in it.

The total free energy is diminished also when any charge is brought up to a dielectric
body from infinity (a process which may be regarded as an increase of ¢ in a certain volume
of the field round the charge). In order to conclude from this that any charge is attracted to
a dielectric, we should, strictly speaking, prove also that .# cannot attain a minimum for
any finite distance between the charge and the body. We shall not pause here to prove this
statement, especially as the presence of an attractive force between a charge and a dielectric
may be regarded as a fairly evident consequence of the interaction between the charge and
the dipole moment of the dielectric, which it polarizes.

We can deduce immediately from formula (14.1) the direction of motion of a dielectric
body in an almost uniform electric field, i.e. one which may be regarded as uniform over
the dimensions of the body. In this case E? is taken outside the integral, and the difference
# — #, is a negative quantity, proportional to EZ. In order to take a position in which its
free energy is a minimum, the body will therefore move in the direction of E increasing,

It can be shown independently of (14.1) that the total change in the free energy of a
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dielectric when it is placed in an electric field is negative.t This can be done by the use of
thermodynamic perturbation theory, the change in the free energy of the body being
regarded as the result of a perturbation of its quantum energy levels by the external electric
field. According to this theory we have

7 sVl MW—w) 1 o=
f‘f0=‘/-’§;§W“ﬁ“n"nn)z* (14.2)

see SP 1, (32.6). Here E,® are the unperturbed levels, ¥, the matrix elements of the
perturbing energy, and the bar denotes a statistical averaging with respect to the Gibbs
distribution w, = exp{(F, —E,*)/T}. ’

The term V,, in formula (14.2), which is linear in the field, is zero except in pyroelectric
bodies. The quadratic change in the free energy, which is of interest here, is given by the
remaining terms. It is evident that they are negative.

On the other hand, it is clear from the derivation of (14.2) that the total free energy .
must be taken in this formula as described in §1 1, omitting the energy of the field which
would exist in the absence of the body. The difference # — #, is therefore given by the
thermodynamic formula (11.7). Let us consider a long narrow cylinder placed paraliel to a
uniform external field €. The field within the cylinder is then € also, and its polarization
P = (¢ —1)€/4x, so that

F-Fo=—(-1)VE/8n.

Thus & — &, is negative only ife¢ > 1. This leads to the conclusion mentioned in §7 and
already made use of, namely that the permittivity of all bodies exceeds unity, and the
dielectric susceptibility x = (¢ — 1)/4n is therefore positive.

In the same way we can prove the inequalities £ > 1 for the principal values of the
tensor &, in an anisotropic dielectric medium. To do so, it is sufficient to consider the
energy of a field parallel to each of the three principal axes in turn.

§15. Electric forces in a fluid dielectric

The problem of calculating the forces (called ponderomotive forces) which act on a
dielectric in an arbitrary non-uniform electric field is fairly complicated and requires
separate consideration for fluids (liquids or gases) and for solids. We shall take first the
simpler case, that of fluid dielectrics. We denote by fd I the force on a volume element d }
and call the vector { the force density.

It is well known that the forces acting on any finite volume in a body can be reduced to
forces applied to the surface of that volume (see TE, §2). Thisisa consequence of the law of
conservation of momentum. The force acting on the matter in a volumed}* is the change in
its momentum per unit time. This change must be equal to the amount of momentum
entering the volume through its surface per unit time. If we denote the momentum fiux

t The change proportional to the square of the field is meant. It may be recalled that, in pyroelectric bodies,
the change in the frec energy contains also a term linear in the field, which is of no interest here.




