Recitation 2 - Dielectric interfaces

Let's suppose we have TM-polarized light incident on the boundary between two dielectrics with indices n_1 and n_2 . The incident light makes some nonzero angle θ with the optical axis. Sketch that situation, including the directions of the k vector, E-field, and B-field for each of the three waves involved.

Given an incident electric field of the form

$$\vec{E}_I(\vec{x},t) = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t + \delta)}$$

What phase angle δ could we choose to represent an incident E-field that has zero magnitude when \vec{x} and t are zero?

Well, when
$$\vec{x}$$
 and \vec{t} are zero, we get
$$\vec{E}_{I} = \vec{E}_{0} e^{i\vec{t}} \qquad \text{And} \qquad e^{i\vec{t}} = 1,$$

$$e^{i\vec{t}} = \vec{E}_{0} e^{i\vec{t}} \qquad e^{i\vec{t}} = 1,$$

e^{iδ} is never zero by itself for any real
$$\delta$$
, but since we take the real part of these expressions to get the physical fields, and Re $\{e^{i\pi/2}\}=0$, a phase angle of δ : $\pi/2$ would do it.