Waves and Blackbody radiation

Simple model of a laser
What physics do we need to understand for lasers?
Scalar wave equation: 1D and 3D
3D waves
Energy in EM waves
A simple linear resonator
The 3D resonator and blackbody radiation

Reading

for today:
Svelto, Principles of Lasers, Ch1, 2.1, 2.2
for Wednesday: \quad Svelto 2.3

A simple model of a laser

- Stimulated emission leads to gain:

$$
I_{0} \propto E_{0}^{2} \quad E(z)=E_{0} e^{+g z} \quad I_{1} \propto E_{1}^{2}=I_{0} e^{2 g L}
$$

- Add a resonator to give feedback:

- Leak some out for the output beam:

$$
I_{n}=I_{0}\left(e^{2 g L}(1-T)\right)^{n} \equiv I_{0}\left(e^{2 g l} e^{-\gamma}\right)^{n}
$$

Threshold: gain = loss

$$
2 g L-\gamma \quad I_{n}=I_{0}
$$

Overview of physics in lasers

- Stimulated emission leads to gain:

Overview of physics in lasers: light-matter interactions

- Stimulated emission leads to gain:

- How does stimulated emission work?
- What conditions are necessary to get gain instead of absorption?
- How do we get energy into the system? (pumping)
- How do the properties of the atom (or other) affect the gain: spectrum, dynamics
- What are different systems for getting gain?
- Atoms, molecules, semiconductors, free-electrons...
- What are the competing processes?

Overview of physics in lasers

- Add a resonator to give feedback:

Overview of physics in lasers: resonators and beams

- Add a resonator to give feedback:

| $I_{n}=I_{0}\left(e^{2 g L}\right)^{n}$
- How do we design the optics of the resonator to avoid leakage? (resonator stability)
- How does the wave nature of the beam affect the resonator?
- Gaussian beams, longitudinal and transverse modes
- How can the resonator to control the beam profile?
- How can we control and measure the output wavelength?
- What types of beams can we produce?

Overview of physics in lasers

- Leak some out for the output beam:

$$
I_{n}=I_{0}\left(e^{2 g L}(1-T)\right)^{n} \equiv I_{0}\left(e^{2 g l} e^{-\gamma}\right)^{n}
$$

Threshold: gain = loss

$$
2 g L-\gamma \quad I_{n}=I_{0}
$$

Overview of physics in lasers: system design, dynamics

- Leak some out for the output beam:

$I_{n}=I_{0}\left(e^{2 g L}(1-T)\right)^{n} \equiv I_{0}\left(e^{2 g l} e^{-\gamma}\right)^{n}$

Threshold: gain = loss
$2 g L-\gamma \quad I_{n}=I_{0}$

- How do we design/optimize pumping system?
- How is gain, energy extraction affected by gain distribution, beam profile, thermal effects?
- How can we characterize the laser performance?
- What happens away from steady state?
- How do we get pulses out of the laser?

Simple 1D scalar wave equation

$$
\frac{\partial^{2}}{\partial z^{2}} \psi(z, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(z, t)=0
$$

- $2^{\text {nd }}$ order PDE
- Assume separable solution

$$
\psi(z, t)=f(z) g(t)
$$

$$
\frac{1}{f(z)} \frac{\partial^{2}}{\partial z^{2}} f(z)-\frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=0
$$

- Each part is equal to a constant A

$$
\begin{aligned}
\frac{1}{f(z)} & \frac{\partial^{2}}{\partial z^{2}} f(z)=A, \frac{1}{c^{2}} \frac{1}{g(t)} \frac{\partial^{2}}{\partial t^{2}} g(t)=A \\
f(z) & =\cos (k z) \rightarrow-k^{2}=A, g(t)=\cos (\omega t) \rightarrow-\omega^{2} \frac{1}{c^{2}}=A \\
\omega & = \pm k c \quad \operatorname{Sin}() \text { also works as a second solution }
\end{aligned}
$$

Full solution of wave equation

- Full solution is a linear combination of both solutions

$$
\psi(z, t)=f(z) g(t)=\left(A_{1} \cos k z+A_{2} \sin k z\right)\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)
$$

- Too messy: use complex solution instead:

$$
\begin{aligned}
& \psi(z, t)=f(z) g(t)=\left(A_{1} e^{i k t}+A_{2} e^{-i k}\right)\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right) \\
& \psi(z, t)=A_{1} B_{1} e^{i(k+\theta+\tau)}+A_{2} B_{2} e^{-i(l z+\alpha t)}+A_{1} B_{2} e^{i(z-\omega t)}+A_{2} B_{1} e^{-i(k-c t)}
\end{aligned}
$$

- Constants are arbitrary: rewrite

$$
\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)
$$

Interpretation of solutions

- Wave vector

$$
k=\frac{2 \pi}{\lambda}
$$

- Angular frequency

$$
\omega=2 \pi \nu
$$

- Wave total phase:

$$
\Phi=k z-\omega t+\phi
$$

- "absolute phase":
ϕ
- Phase velocity: c

$$
\Phi=k z-k c t+\phi=k(z-c t)+\phi
$$

$\Phi=$ constant when $z=c t$

$$
\psi(z, t)=A_{1} \cos \left(k z+\omega t+\phi_{1}\right)+A_{2} \cos \left(k z-\omega t+\phi_{2}\right)
$$

Reverse (to -z) Forward (to +z)

Simple 3D scalar wave equation

$$
\frac{\partial^{2}}{\partial x^{2}} \psi(x, y, z, t)+\frac{\partial^{2}}{\partial y^{2}} \psi(x, y, z, t)+\frac{\partial^{2}}{\partial z^{2}} \psi(x, y, z, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(x, y, z, t)=0
$$

- Still a $2^{\text {nd }}$ order PDE

Refractive index changes velocity

- Assume separable solution $\psi(z, t)=f_{x}(x) f_{y}(y) f_{z}(z) g(t)$
$\psi(z, t)=$

$$
\left(A_{1 x} e^{i k_{x} x}+A_{2 x} e^{-i k_{x} x}\right)\left(A_{1 y} e^{i k_{y} y}+A_{2 y} e^{-i k_{y} y}\right)\left(A_{1 z} e^{i k_{z} z}+A_{2 z} e^{-i k_{z} z}\right)\left(B_{1} e^{i \omega t}+B_{2} e^{-i \omega t}\right)
$$

$$
\psi(z, t)=
$$

$$
\begin{aligned}
& A_{1} \cos \left(k_{x} x+k_{y} y+k_{z} z+\omega t+\phi_{1}\right) \\
& +A_{2} \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t+\phi_{2}\right)
\end{aligned}
$$

Wave vectors and the wave equation

$$
\begin{array}{ll}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(x, y, z, t)=0 \\
\psi(z, t)= & \rightarrow \nabla^{2} \psi(\mathbf{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(\mathbf{r}, t)=0 \\
& A_{1} \cos \left(k_{x} x+k_{y} y+k_{z} z+\omega t+\phi_{1}\right) \\
& \rightarrow \psi(z, t)=A_{1} \cos \left(\mathbf{k} \cdot \mathbf{r}+\omega t+\phi_{1}\right) \\
& \rightarrow A_{2} \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t+\phi_{2}\right)
\end{array}
$$

\mathbf{k} is a vector that defines the direction of the wave

Valid even in waveguides and resonators

Complex notation for waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one part
- We will use $\quad E_{0} e^{+i(k z-\omega t)} \quad E_{0}=\frac{1}{2} E_{x} e^{i \phi}$
- Svelto: $e^{-i(k z-\omega t)}$
- Then take the real part.
- No factor of 2
- In nonlinear optics, we have to explicitly include conjugate term

Example: linear resonator (1D)

- Boundary conditions: conducting ends (mirrors)

$$
E_{x}(z=0, t)=0 \quad E_{x}\left(z=L_{z}, t\right)=0
$$

- Field is a superposition of +'ve and -'ve waves:
$E_{x}(z, t)=A_{+} e^{i\left(k_{z} z-\omega t+\phi_{+}\right)}+A_{-} e^{i\left(-k_{z} z-\omega t+\phi_{-}\right)}$
- Absorb phase into complex amplitude
$E_{x}(z, t)=\left(A_{+} e^{i k_{z} z}+A_{-} e^{-i k_{z} z}\right) e^{-i \omega t}$
- Apply b.c. at $\mathrm{z}=0$
$E_{x}(0, t)=0=\left(A_{+}+A_{-}\right) e^{-i \omega t} \rightarrow A_{+}=-A_{-}$
$E_{x}(z, t)=A \sin k_{z} z e^{-i \omega t}$

Quantization of frequency: longitudinal modes

- Apply b.c. at far end
$E_{x}\left(L_{z}, t\right)=0=A \sin k_{z} L_{z} e^{-i \omega t} \quad \rightarrow k_{z} L_{z}=l \pi \quad l=1,2,3, \cdots$
- Relate to wavelength:

$$
k_{z}=\frac{2 \pi}{\lambda}=\frac{l \pi}{L_{z}} \rightarrow L_{z}=l \frac{\lambda}{2} \quad \begin{aligned}
& \text { Integer number of } \\
& \text { half-wavelengths }
\end{aligned}
$$

- Relate to allowed frequencies:

$$
\frac{\omega_{l}}{c}=\frac{l \pi}{L_{z}} \rightarrow v_{l}=l \frac{c}{2 L_{z}}
$$

- Equally spaced frequencies:

$$
\Delta v=\frac{c}{2 L_{z}}=\frac{1}{T_{R T}}
$$

Frequency spacing $=1$ / round trip time

Wave energy and intensity

- Both E and H fields have a corresponding energy density ($\mathrm{J} / \mathrm{m}^{3}$)
- For static fields (e.g. in
) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

H field from E field

- Maxwell equations relate E and H fields
- H field for a propagating wave is in phase with Efield

$$
\begin{aligned}
\mathbf{H} & =\hat{\mathbf{y}} H_{0} \cos \left(k_{z} z-\omega t\right) \\
& =\hat{\mathbf{y}} \frac{k_{z}}{\omega \mu_{0}} E_{0} \cos \left(k_{z} z-\omega t\right)
\end{aligned}
$$

- Amplitudes are not independent

$$
H_{0}=\frac{n}{c \mu_{0}} E_{0}=n \varepsilon_{0} c E_{0}
$$

- Note: field is polarized, two possible directions

Energy density in an EM wave

- The energy of the EM wave resides in both E and H fields
- Energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$

$$
\begin{array}{ll}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 \\
\rho=\varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E^{2} \cos ^{2}\left(k_{z} z-\omega t\right)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k} r-\omega t)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Closed box resonator: blackbody cavity

- Here we have a 3D pattern of standing waves
- Exact boundary conditions aren't imp't, but for conducting walls:
- $\mathrm{E}=0$ where field is parallel to wall
- Slope $\mathrm{E}=0$ where field is perp to wall (charges can accumulate there)
- Example standing wave solution:

$$
E_{x}(x, y, z)=A_{x} \cos k_{x} x \sin k_{y} y \sin k_{z} z
$$

- $\operatorname{Cos}()$ function along field direction

- Others:

$$
\begin{aligned}
& E_{y}(x, y, z)=A_{y} \sin k_{x} x \cos k_{y} y \sin k_{z} z \\
& E_{z}(x, y, z)=A_{z} \sin k_{x} x \sin k_{y} y \cos k_{z} z
\end{aligned}
$$

Discrete wavevectors

- Discrete values of k :

$$
k_{x}=\frac{l \pi}{L_{x}} \quad k_{y}=\frac{m \pi}{L_{y}} \quad k_{z}=\frac{n \pi}{L_{z}}
$$

- With these solutions in the wave equation

$$
\frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k} \quad 2 \text { allowed polarizations }
$$

- k's are discrete, so there are discrete allowed frequencies:

$$
\begin{aligned}
& \omega_{l m n}=c \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l \pi}{L_{x}}\right)^{2}+\left(\frac{m \pi}{L_{y}}\right)^{2}+\left(\frac{n \pi}{L_{z}}\right)^{2}} \\
& v_{l m n}=\frac{c}{2 \pi} \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}=c \sqrt{\left(\frac{l}{2 L_{x}}\right)^{2}+\left(\frac{m}{2 L_{y}}\right)^{2}+\left(\frac{n}{2 L_{z}}\right)^{2}}
\end{aligned}
$$

Field in equilibrium with walls: classical

- Hold cavity walls at temperature T
- What is probability that a mode will be excited?
- Classical view (Boltzmann): $\quad P(\boldsymbol{\varepsilon}) \propto e^{-\varepsilon / k T}$
- assume the amount of energy in each mode can take any value (continuous range) this is wrong!
- average energy for each mode is

$$
\langle\boldsymbol{\varepsilon}\rangle=\frac{\int_{0}^{\infty} \boldsymbol{\varepsilon} P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} P(\boldsymbol{\varepsilon}) d \boldsymbol{\varepsilon}}=\frac{\int_{0}^{\infty} \boldsymbol{\varepsilon} e^{-\boldsymbol{\varepsilon} / k T} d \boldsymbol{\varepsilon}}{\int_{0}^{\infty} e^{-\boldsymbol{\varepsilon} k T} d \boldsymbol{\varepsilon}}=k T
$$

- Note: this is not kT/2 as in equipartition of K.E. There, integrate on velocity, which ranges - to +

Density of states

- For a given box size, there is a low frequency cutoff but no cutoff for high frequencies
- Near a given frequency, there will be a number of combinations of k's I, m, n for that frequency

$$
\begin{aligned}
N(k) & =\text { \#pol states } \times \frac{\text { volume of k-space octant }}{\text { volume of unit k-space cell }} \\
& =2 \frac{\frac{1}{8}(4 / 3) \pi k^{3}}{\frac{\pi}{L_{x}} \times \frac{\pi}{L_{y}} \times \frac{\pi}{L_{z}}}=\frac{k^{3}}{3 \pi^{2}} V
\end{aligned}
$$

Density of modes = density of states

$$
g(k) d k=\frac{1}{V} \frac{d N(k)}{d k} d k=\frac{k^{2}}{\pi^{2}} d k
$$

Other forms:

$$
g(\omega) d \omega=\frac{\omega^{2}}{\pi^{2} c^{3}} d \omega \quad g(v) d \nu=8 \pi \frac{v^{2}}{c^{3}} d \nu
$$

Spectral energy density

- Generalize EM energy density to allow for spectral distribution
$\rho(v) d \nu=$ excitation energy per mode \times density of modes
- Total energy density: $\int \rho(v) d v$
- Classical form:

$$
\rho(v) d v=k_{B} T \frac{8 \pi v^{2}}{c^{3}} d v
$$

- Problem: total energy is infinite!
- Planck: only allow quantized energies for each mode

$$
\varepsilon=\left(n+\frac{1}{2}\right) h v \quad n=\text { number of photons in each mode }
$$

- Now get average energy/mode with sum, not integral

$$
P_{n}=\frac{e^{-\varepsilon_{n} / k_{B} T}}{\sum_{j} e^{-\varepsilon_{j} / k_{B} T}} \quad \text { Mean photon number: } \bar{n}=\sum_{n} n P_{n}
$$

Blackbody spectrum

- Mean number of photons per mode:

$$
\bar{n}=\sum_{j} n P_{n}=1 /\left(e^{h \nu / k_{B} T}-1\right)
$$

- Spectral energy density of BB radiation:
$\rho(v) d v=\operatorname{avg} \#$ photons per mode $\times h v$ per photon \times density of modes

$$
=\frac{1}{e^{h \nu / k_{B} T}-1} h \nu \mathrm{~g}(\nu) d \nu=8 \pi \frac{v^{2}}{c^{3}} \frac{h \nu}{e^{h \nu / k_{B} T}-1} d v_{\substack{\text { Toward the } \\ \text { Uutraviote } \\ \text { catastrophe" }}}^{\wedge}
$$

