Waves and Blackbody radiation

Simple model of a laser

What physics do we need to understand for lasers?
Scalar wave equation: 1D and 3D

3D waves

Energy in EM waves

A simple linear resonator

The 3D resonator and blackbody radiation

Reading

for today:
Svelto, Principles of Lasers, Ch1, 2.1, 2.2
for Wednesday: Svelto 2.3



A simple model of a laser

« Stimulated emission leads to gain:

I, < E; E(z)=E, ™" I, < E; =1,e*"
* Add a resonator to give feedback:

Te—— - I I, =1,(e*
€< —
* Leak some out for the output beam:
>Output coupler (OC)
«— — —_—

I,=1,( (1-T))

I, (esze—y)” Threshold: gain = loss
2gL—y I =1,



Overview of physics in lasers

« Stimulated emission leads to gain:
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Overview of physics in lasers:
light-matter interactions
« Stimulated emission leads to gain:
—> —_—

I, < E, E(z)=E,e"* I, <E’=1,e"*"
— How does stimulated emission work?

— What conditions are necessary to get gain instead of
absorption?

— How do we get energy into the system? (pumping)

— How do the properties of the atom (or other) affect the
gain: spectrum, dynamics

— What are different systems for getting gain?
« Atoms, molecules, semiconductors, free-electrons...
— What are the competing processes?



Overview of physics in lasers

* Add a resonator to give feedback:

— «— ) I I =1, (esz )n




Overview of physics in lasers:
resonators and beams
* Add a resonator to give feedback:

—_—> >

< i I I,=1,(")
€< <«

— How do we design the optics of the resonator to avoid
leakage”? (resonator stability)

— How does the wave nature of the beam affect the
resonator?

« Gaussian beams, longitudinal and transverse modes
— How can the resonator to control the beam profile?

— How can we control and measure the output
wavelength?

— What types of beams can we produce?



Overview of physics in lasers

» Leak some out for the output beam:

- >Output coupler (OC)
«— «— —_—
—> —_—
@ b
J = Io(esz(l—T))n _ Io(esze_y )” Threshold: gain = loss

2gL—vy I =1,



Overview of physics in lasers:
system design, dynamics
» Leak some out for the output beam:

- >Output coupler (OC)
«— «— —_—
—> —_—
@ b
J = Io(esz(l—T))n _ Io(esze_y )” Threshold: gain = loss
2gL—vy I =1,

— How do we design/optimize pumping system?

— How is gain, energy extraction affected by gain
distribution, beam profile, thermal effects?

— How can we characterize the laser performance?

— What happens away from steady state?

— How do we get pulses out of the laser?



Simple 1D scalar wave equation

82 1 82
o — vz, l‘)——zyllf(zaf)—o
« 2"d order PDE
« Assume separable solution w(z.0)=f(z)g(7)

e e

— Each part is equal to a constant A
1 0 ()= A 1 1 9 (1)= 4
7(z) o2 O
1

f(z)= cos(kz) ——k’= A, g(t) = cos(a) t) — -’ — =4
c

=0

=+ : :
w=tkc Sin( ) also works as a second solution



Full solution of wave equation

 Full solution is a linear combination of both
solutions

Y(z,t)= f(z)g(t) = (A1 coskz+ A, sinkz)(B1 coswt+ B, sina)t)
 Too messy: use complex solution instead:
w(z0=f(2)g(r)=(4e" + 4,e)(Be™ + B ™)

y(z,t)= 4 Be o) +A Be i) +Aleei(kZ_wt) +A2Ble_i(kz_wt)

— Constants are arbitrary: rewrite
Yy(z,t)= 4 cos(kz+ a)t+¢1)+ A, cos(kz— a)t+¢2)



Interpretation of solutions

* Wave vector k:%
« Angular frequency =27V
* Wave total phase: D = kz — ot +¢
— “absolute phase’: ¢
— Phase velocity: ¢ ®=hkz—kct+d=k(z—ct)+¢

® = constant when z = ¢t

V(z,t)= Alcos(kz+a)t+¢1)+ A cos(kz—a)t+¢2)

Reverse (to -z) Forward (to +z)



Simple 3D scalar wave equation

9’ 9’ J’ n* o
y"/j(xayaz:t)_ka—yz"”(xayazat)_l_gW(xaybzat) - C_z ?W(x’y’z’t) =0

Refractive index changes velocity

« Still a 2"d order PDE
» Assume separable solution w(z.0=f.(x)f,(v)f.(z)g(?)

y(z,0)=
(141x€ikxx +A2x€_ikxx)(14-|yeikyy +A2ye—ikyy)(Alzeikzz +Azze—ikzz)(Bleia)t +Bze—ia)t)

y(z,1)=
Alcos(kxx+ kyy+kzz+a)t+q)1)

+4, cos(kxx + kyy +k z—wt+ ¢2)



Wave vectors and the wave equation

82

90 0
+—+
( dx* dy° 0z’

W(z,t)=

2 2
n

¢’ o’

jl//(xﬁyazat) T T 5 —W(x,y,Z,t) =0

Alcos(kxx+kyy+kzz+a)t+¢l)

+4, cos(kxx + kyy +kz—wt+ ¢2)

2

V() -y () =0
c” ot

— Y (z,t)= Alcos(k-r+a)t+¢l)

+A4, cos(k-r—a)t+¢2)

k is a vector that defines the direction of the wave

A

k

b

2

» W

n_z—
C

ki +k, +k; =k K

>

Valid even in waveguides
and resonators



Complex notation for waves

* Write cosine in terms of exponential

E(Z,t) = )A(Ex Cos(kz — 0t + (p) — ’A(Ex %(ei(kz—a)t#f’) n e—i(kz—a)t+¢))

— Note E-field is a real quantity.

— It is convenient to work with just one part
+ We willuse ~ E,e™™®)  E =LlFE ¢*
e Svelto: o {Uke=ot)

— Then take the real part.
* No factor of 2

 In nonlinear optics, we have to explicitly include
conjugate term



Example: linear resonator (1D)

* Boundary conditions: conducting ends (mirrors)
E (z=0,)=0 E (z=L.t)=0

* Field is a superposition of +'ve and —'ve waves:
E (z,t)= A+e"("zz‘“’”¢+) + A elheor)

— Absorb phase into complex amplitude
E (z,t)= (Aﬁ”kzZ + A_e_ikzz)e_ia’t

— Apply b.c.atz=0

E (0,)=0=(A,+A )e™ > A =-A

+ =

E (z,t)=Asink_ze™



Quantization of frequency: longitudinal
modes
* Apply b.c. at far end
E(L.t)=0=Asink L e™ kL =In  [=12,3,

— Relate to wavelength:

2 Irm 7 = A Integer number of
z- 9 7 z - Y A half-wavelengths
A L. 2
— Relate to allowed frequencies:
w Ir C
—_—— vl —_f
c L, 2L,
— Equally spaced frequencies:
A — 1 Frequency spacing

2LZ T, = 1/ round trip time



Wave energy and intensity

* Both E and H fields have a corresponding

energy density (J/m?3)
) the energy

— For static fields (e.g. in
density can be calculated through the work

done to set up the field
p = %SE ? + % uH . éé'égDieIectric
— Some work is required to polarize the medium
— Energy is contained in both fields, but H field
can be calculated from E field

3

IO




H field from E field

Maxwell equations relate E and H fields

H field for a propagating wave is in phase with E-

I Electromagnetic Wave
fleld <— Magnetic Field (B)

H=yH, cos(kzz — a)t)

k 2 -
=y EO cos(kzz— a)t) Bk v &/ Propagation

), - Direction
Ky Wavelength (A) g

B

Figure 1

Amplitudes are not independent

n
HO = C—'UOEO = I’lSOCEO

Note: field is polarized, two possible directions



Energy density in an EM wave

* The energy of the EM wave resides in both E and
H fields

« Energy density (J/m?3)

p:%gEzq_%‘uO[—]z H = ne ck
g=gn’

p=1en’E*+iun’e,’c’E’

He =1
p=¢gn’E*=¢gn’E’ cos’ (kzz — a)t)

Equal energy in both components of wave



Cycle-averaged energy density

» Optical oscillations are faster than detectors
* Average over onle cycle:
T
(p)=€n’E,’ —J cos’ (kzz — a)t)dt

0
— Graphically, we can see this should = 7%

0.5 1.0 I.

— Regardless of position z




General 3D plane wave solution

* Assume separable function
E(x,y,2.0~ £(x) £ (») £,(2) ()

82 82 82 (Z f) _ n2 82

V’E(z,t)=—E(z,t)+—E(z,t)+=—E ——E(z.1)

0x dy 0z ¢ ot

« Solution takes the form:
E(x,y,z,t)=E, ik gy ikz jmion _ Eoei(kxx+kyy+kzz)e_iwt

E(x,y.2.1) = Eoei(kr—a)t)
— Now k-vector can point in arbitrary direction

e With this solution in W.E.:

2
a) . . .
=k ky2 +k2 =k k Valid even in waveguides
C and resonators




Closed box resonator: blackbody cavity

* Here we have a 3D pattern of standing waves

— Exact boundary conditions aren’t imp’t, but for
conducting walls:
« E=0 where field is parallel to wall
« Slope E=0 where field is perp to wall (charges can

accumulate there)

— Example standing wave solution:
E (x,y,z) = A _cosk x sinkyy sink_z

» Cos( ) function along field direction S L

— Others:
E (x,y,z) = A, sink xcosk ysink z

E (x,y,z) = A_sink x sk ycosk z

z



Discrete wavevectors

* Discrete values of k:

kx — l_ﬂ: ky = m—ﬂ: kz — ﬂ
L L, L.
* With these solutions in the wave equation
2
)]
— =k, +k; +k. =k-k 2 allowed polarizations

C

— k’s are discrete, so there are discrete allowed
frequencies:

2 2 2
a),mn:c\/kj+k2+kj=c Im) jme|  jne
: L, L, L,
] 2 2 2
vlmn:i\/kf+k2+kf:c L
27 : 2L, ) \2L,) 2L,




Field in equilibrium with walls: classical

* Hold cavity walls at temperature T
« What is probability that a mode will be excited?

» Classical view (Boltzmann):  P(&€)<e®"

— assume the amount of energy in each mode can take any
value (continuous range) this is wrong!

— average energy for each mode is

oo

[gP(g)as [ge"ag
(g)=" =0 = kT

(e ]

Tp(g)dg J‘e—s/krdg

0 0
— Note: this is not kT/2 as in equipartition of K.E. There,
integrate on velocity, which ranges — to +




Density of states

« For a given box size, there is a low frequency cutoff but no
cutoff for high frequencies

* Near a given frequency, there will be a number of
combinations of k's ,m,n for that frequency

volume of k-space octant

di N (k) = #pol states X .
volume of unit k-space cell

(4/3)mk’ K’

1
=° jr A
= X — X S0
” L. L, L
1 dN(k k®
Density of modes = density of states g(k)dk = V%dk =—dk
n’

2 2

© o g(v)dv = 87tv—3dv
C

2.3
T cC

Other forms: g(a))da) —



Spectral energy density

« Generalize EM energy density to allow for spectral
distribution

p(v)dv = excitation energy per mode X density of modes

— Total energy density: Jp(v)dv
— Classical form:

8V’
C3

dv

p(v)dv =k,T

— Problem: total energy is infinite!
* Planck: only allow quantized energies for each mode
E=(n+%)hv n = number of photons in each mode
— Now get average energy/mode with sum, not integral

Z Paiad Mean photon number: 7 = EnnPn
J

P =



Blackbody spectrum

 Mean number of photons per mode:

n=Y nb=1/("" 1)

« Spectral energy density of BB radiation:
p(v)dv = avg # photons per mode X hv per photon X density of modes

2E-16

Spectral density (J sm™)

0

1.5E-16 |

1E-16

5E-17

1

hi!k,T
et —

/5000 K
4000 K

0.0 1.0 2.0 3.0 4.0 5.0
Energy (eV)

* hy

1hv g(v)dv = 87~

3 h!k,T
C B —

e

Radiated Intensity

Toward the
"ultraviclet
catastrophe"
[ - Rayleigh-Jeans Law
8,{\! d ‘ T y g
LY
| ¢3
&
I/
o
o
O
¥
] Planck Law
7 h
& 4y
r Curves agree at " L
i S c kT - 4
very low frequencies e
=%

T
Frequency




