
Waves and Blackbody radiation 
Simple model of a laser 

What physics do we need to understand for lasers?  

Scalar wave equation: 1D and 3D 

3D waves 

Energy in EM waves 

A simple linear resonator 

The 3D resonator and blackbody radiation 

 

Reading 

 for today: 

   Svelto, Principles of Lasers,  Ch1, 2.1, 2.2 

 for Wednesday:  Svelto 2.3 



A simple model of a laser 
•  Stimulated emission leads to gain: 

 
•  Add a resonator to give feedback: 

•  Leak some out for the output beam:   

E z( ) = E0e+g zI0 ∝E0
2 I1 ∝E1

2 = I0e
2gL

In = I0 e
2gL( )n

Output coupler (OC) 

In = I0 e
2gL 1−T( )( )n ≡ I0 e2gLe−γ( )n Threshold: gain = loss 

2gL −γ In = I0



Overview of physics in lasers 
•  Stimulated emission leads to gain: 

 E z( ) = E0e+g zI0 ∝E0
2 I1 ∝E1

2 = I0e
2gL



Overview of physics in lasers:  
light-matter interactions 

•  Stimulated emission leads to gain: 

–  How does stimulated emission work?  
–  What conditions are necessary to get gain instead of 

absorption?  
–  How do we get energy into the system? (pumping) 
–  How do the properties of the atom (or other) affect the 

gain: spectrum, dynamics 
–  What are different systems for getting gain?  

•  Atoms, molecules, semiconductors, free-electrons… 
–  What are the competing processes?  

E z( ) = E0e+g zI0 ∝E0
2 I1 ∝E1

2 = I0e
2gL



Overview of physics in lasers 
•  Add a resonator to give feedback: 

 

In = I0 e
2gL( )n



Overview of physics in lasers:  
resonators and beams 

•  Add a resonator to give feedback: 

–  How do we design the optics of the resonator to avoid 
leakage? (resonator stability) 

–  How does the wave nature of the beam affect the 
resonator?  

•  Gaussian beams, longitudinal and transverse modes 
–  How can the resonator to control the beam profile?  
–  How can we control and measure the output 

wavelength?  
–  What types of beams can we produce? 

 

 

In = I0 e
2gL( )n



Overview of physics in lasers 
•  Leak some out for the output beam:   

Output coupler (OC) 

In = I0 e
2gL 1−T( )( )n ≡ I0 e2gLe−γ( )n Threshold: gain = loss 

2gL −γ In = I0



Overview of physics in lasers:  
system design, dynamics 

•  Leak some out for the output beam: 

–  How do we design/optimize pumping system?  
–  How is gain, energy extraction affected by gain 

distribution, beam profile, thermal effects?  
–  How can we characterize the laser performance?  
–  What happens away from steady state?  
–  How do we get pulses out of the laser?    

Output coupler (OC) 

In = I0 e
2gL 1−T( )( )n ≡ I0 e2gLe−γ( )n Threshold: gain = loss 

2gL −γ In = I0



Simple 1D scalar wave equation 

•  2nd order PDE 
•  Assume separable solution 

–  Each part is equal to a constant A 

  
∂2

∂z2ψ (z,t) − 1
c2

∂2

∂t2ψ (z,t) = 0

  ψ (z,t) = f z( )g t( )

  

1
f z( )

∂2

∂z2 f (z) − 1
c2

1
g t( )

∂2

∂t2 g t( ) = 0

  

1
f z( )

∂2

∂z2 f (z) = A, 1
c2

1
g t( )

∂2

∂t2 g t( ) = A

  
f (z) = cos kz( )→−k 2 = A, g t( ) = cos ω t( )→−ω 2 1

c2 = A

 ω = ±k c Sin( ) also works as a second solution 



Full solution of wave equation 
•  Full solution is a linear combination of both 

solutions 

•  Too messy: use complex solution instead: 

–  Constants are arbitrary: rewrite 

  ψ (z,t) = f z( )g t( ) = A1 coskz + A2 sin kz( ) B1 cosωt + B2 sinωt( )

  ψ (z,t) = f z( )g t( ) = A1e
ikz + A2e

− ikz( ) B1e
iωt + B2e

− iωt( )
  ψ (z,t) = A1B1e

i kz+ωt( ) + A2B2e
− i kz+ωt( ) + A1B2e

i kz−ωt( ) + A2B1e
− i kz−ωt( )

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )



Interpretation of solutions 
•  Wave vector 

•  Angular frequency 

•  Wave total phase: 
–  “absolute phase”: 
– Phase velocity: c    

  
k = 2π

λ

 ω = 2πν

 Φ = kz −ωt +φ
φ

  Φ = constant when z = ct
 Φ = kz − k ct +φ = k z − ct( ) +φ

  ψ (z,t) = A1 cos kz +ωt +φ1( ) + A2 cos kz −ωt +φ2( )
Forward (to +z) Reverse (to -z) 



Simple 3D scalar wave equation 

•  Still a 2nd order PDE 
•  Assume separable solution 

  

∂2

∂x2ψ (x, y,z,t)+ ∂2

∂y2ψ (x, y,z,t)+ ∂2

∂z2ψ (x, y,z,t) − n2

c2

∂2

∂t2ψ (x, y,z,t) = 0

  ψ (z,t) = fx x( ) f y y( ) fz z( )g t( )

  

ψ (z,t) =

A1xe
ikxx + A2xe

− ikxx( ) A1ye
iky y + A2 ye

− iky y( ) A1ze
ikzz + A2ze

− ikzz( ) B1e
iωt + B2e

− iωt( )

  

ψ (z,t) =

A1 cos kxx + ky y + kz z +ωt +φ1( )
+A2 cos kxx + ky y + kz z −ωt +φ2( )

Refractive index changes velocity 



Wave vectors and the wave equation 

  

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

⎛
⎝⎜

⎞
⎠⎟
ψ (x, y,z,t) − n2

c2

∂2

∂t2ψ (x, y,z,t) = 0

   
→∇2ψ (r,t) − 1

c2

∂2

∂t2ψ (r,t) = 0

  

ψ (z,t) =

A1 cos kxx + ky y + kz z +ωt +φ1( )
+A2 cos kxx + ky y + kz z −ωt +φ2( )    

→ψ (z,t) = A1 cos k ⋅r +ωt +φ1( )
+A2 cos k ⋅r −ωt +φ2( )

 k is a vector that defines the direction of the wave 

k 

n2 ω
2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k Valid even in waveguides 
and resonators 



Complex notation for waves 
•  Write cosine in terms of exponential 

–  Note E-field is a real quantity.  
–  It is convenient to work with just one part 

•  We will use  
•  Svelto:  

–  Then take the real part.   
•  No factor of 2 
•  In nonlinear optics, we have to explicitly include 

conjugate term 
 

E z,t( ) = x̂Ex cos kz −ωt +φ( ) = x̂Ex
1
2
ei kz−ωt+φ( ) + e− i kz−ωt+φ( )( )

E0e
+ i kz−ωt( )

e− i kz−ωt( )
E0 = 1

2 Exe
iφ



Example: linear resonator (1D) 
•  Boundary conditions: conducting ends (mirrors) 

•  Field is a superposition of +’ve and –’ve waves: 

–  Absorb phase into complex amplitude 

–  Apply b.c. at z = 0 

Ex z,t( ) = A+e
i kzz−ωt+φ+( ) + A−e

i −kzz−ωt+φ−( )

Ex z = 0,t( ) = 0 Ex z = Lz ,t( ) = 0

Ex z,t( ) = A+e
+ ikzz + A−e

− ikzz( )e− iωt

Ex 0,t( ) = 0 = A+ + A−( )e− iωt → A+ = −A−

Ex z,t( ) = Asin kzz e− iωt



Quantization of frequency: longitudinal 
modes 

•  Apply b.c. at far end 

–  Relate to wavelength: 

–  Relate to allowed frequencies:  

–  Equally spaced frequencies:  

Ex Lz ,t( ) = 0 = Asin kz Lz e− iωt → kzLz = lπ  l= 1,2,3,

kz =
2π
λ

= lπ
Lz

→ Lz = l
λ
2

Integer number of 
half-wavelengths 

ω l

c
= lπ
Lz

→ν l = l
c
2Lz

Δν = c
2Lz

= 1
TRT

Frequency spacing 
= 1/ round trip time 



Wave energy and intensity 
•  Both E and H fields have a corresponding 

energy density (J/m3) 
–  For static fields (e.g. in capacitors) the energy 

density can be calculated through the work 
done to set up the field 

 
–  Some work is required to polarize the medium 
–  Energy is contained in both fields, but H field 

can be calculated from E field 

ρ = 1
2 εE

2 + 1
2 µH

2



H field from E field 
•  Maxwell equations relate E and H fields 
•  H field for a propagating wave is in phase with E-

field 

•  Amplitudes are not independent 

•  Note: field is polarized, two possible directions 

   

H = ŷH0 cos kz z −ωt( )
= ŷ

kz

ωµ0

E0 cos kz z −ωt( )

  
H0 =

n
cµ0

E0 = nε0cE0



Energy density in an EM wave 
•  The energy of the EM wave resides in both E and 

H fields 
•  Energy density (J/m3) 

ρ = 1
2 εE

2 + 1
2 µ0H

2

ε = ε0n
2

  µ0ε0c
2 = 1

  H = nε0cE

ρ = 1
2 ε0n

2E2 + 1
2 µ0n

2ε0
2c2E2

ρ = ε0n
2E2 = ε0n

2E2 cos2 kzz −ωt( )
Equal energy in both components of wave 



Cycle-averaged energy density 
•  Optical oscillations are faster than detectors 
•  Average over one cycle: 

–  Graphically, we can see this should = ½  

–  Regardless of position z 

ρ = ε0n
2E0

2 1
T

cos2 kzz −ωt( )dt
0

T

∫

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

t/T 

k z = 0 

k z = π/4 

ρ = 1
2
ε0n

2E0
2



General 3D plane wave solution 
•  Assume separable function 

 
•  Solution takes the form: 

 
– Now k-vector can point in arbitrary direction 

•  With this solution in W.E.: 

    


∇2E z,t( ) = ∂2

∂x2 E z,t( ) + ∂2

∂y2 E z,t( ) + ∂2

∂z2 E z,t( ) = n2

c2

∂2

∂t2 E z,t( )
   E(x, y,z,t) ~ f1 x( ) f2 y( ) f3 z( )g t( )

E(x, y, z,t) = E0e
ikxxeikyyeikzze− iωt = E0e

i kxx+kyy+kzz( )e− iωt

E(x, y, z,t) = E0e
i k⋅r−ωt( )

n2 ω
2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k Valid even in waveguides 
and resonators 



Closed box resonator: blackbody cavity 
•  Here we have a 3D pattern of standing waves 

– Exact boundary conditions aren’t imp’t, but for 
conducting walls: 

•  E=0 where field is parallel to wall 
•  Slope E=0 where field is perp to wall (charges can 

accumulate there) 
– Example standing wave solution: 

•  Cos( ) function along field direction 

– Others:  

  Ex x, y,z( ) = Ax coskxx sin ky y sin kz z
Ex + - 

  Ey x, y,z( ) = Ay sin kxxcosky y sin kz z

  Ez x, y,z( ) = Az sin kxx sin ky y coskz z



Discrete wavevectors 
•  Discrete values of k: 

•  With these solutions in the wave equation 

–  k’s are discrete, so there are discrete allowed 
frequencies: 

ω 2

c2
= kx

2 + ky
2 + kz

2 = k ⋅k

kx =
lπ
Lx

ky =
mπ
Ly

kz =
nπ
Lz

ω lmn = c kx
2 + ky

2 + kz
2 = c lπ

Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ mπ
Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ nπ
Lz

⎛
⎝⎜

⎞
⎠⎟

2

ν lmn =
c
2π

kx
2 + ky

2 + kz
2 = c l

2Lx

⎛
⎝⎜

⎞
⎠⎟

2

+ m
2Ly

⎛

⎝⎜
⎞

⎠⎟

2

+ n
2Lz

⎛
⎝⎜

⎞
⎠⎟

2

2 allowed polarizations 



Field in equilibrium with walls: classical 
•  Hold cavity walls at temperature T 
•  What is probability that a mode will be excited? 
•  Classical view (Boltzmann): 

–  assume the amount of energy in each mode can take any 
value (continuous range) this is wrong! 

–  average energy for each mode is 

–  Note: this is not kT/2 as in equipartition of K.E. There, 
integrate on velocity, which ranges – to + 

 P E( )∝ e−E /kT

 

E =
E P E( )

0

∞

∫ dE

P E( )
0

∞

∫ dE
=

E e−E /kT dE
0

∞

∫

e−E /kT

0

∞

∫ dE
= kT



Density of states 
•  For a given box size, there is a low frequency cutoff but no 

cutoff for high frequencies 
•  Near a given frequency, there will be a number of 

combinations of k’s l,m,n for that frequency 

N k( ) = #pol states ×  volume of k-space octant
volume of unit k-space cell

= 2
1
8 4 / 3( )π k 3

π
Lx

× π
Ly

× π
Lz

= k 3

3π 2 V

Density of modes = density of states g k( )dk = 1
V
dN k( )
dk

dk = k2

π 2 dk

g ω( )dω = ω 2

π 2c3
dω g ν( )dν = 8π ν 2

c3
dνOther forms: 



Spectral energy density 
•  Generalize EM energy density to allow for spectral 

distribution 

–  Total energy density:  
–  Classical form: 

–  Problem: total energy is infinite! 
•  Planck: only allow quantized energies for each mode 

–  Now get average energy/mode with sum, not integral 
 

ρ ν( )dν = excitation energy per mode × density of modes

ρ ν( )dν = kBT
8πν 2

c3
dν

ρ ν( )dν∫

 E = n + 1
2( )hν

 
Pn =

e−En /kBT

e−E j /kBT

j∑ Mean photon number:   

n = number of photons in each mode 

n = nPnn∑



Blackbody spectrum 
•  Mean number of photons per mode:  

•  Spectral energy density of BB radiation: 
ρ ν( )dν = avg # photons per mode × hν per photon × density of modes

= 1
ehν /kBT −1

hν g ν( )dν = 8π ν 2

c3
hν

ehν /kBT −1
dν

n = nPnj∑ = 1 ehν /kBT −1( )


