Assignment 6 PHGN361

Homework due Feb. 22

1. Generate a graph in Mathematica which displays the potential energy of a positive test charge constrained to move in the xy plane placed between at least 4 other positive charges also located in the xy plane. This is meant to show a different approach to solving 3.2
2. Derive the solution to the diffusion equation $\left(\nabla^{2} T=\frac{1}{\kappa} \partial T / \partial t\right)$ by separation of variables in spherical coordinates assuming that the boundary conditions have spherical symmetry. Hint: assume $R(r)=$ f / r where f is a function of r to be determined.
3. A "infinite" cylindrical steam pipe of radius a is surrounded by cylindrical insulation out to radius b. Find an expression for the rate at which heat (thermal energy) is lost by the pipe if the temperature at radius a is T_{1} and at radius b is T_{2}. Assume thermostatics $\left(\kappa \nabla^{2} T=c_{v} \partial T / \partial t\right.$ where c_{v} is the heat capacity per unit volume per unit mass and κ is the thermal conductivity of the material.)
4. Chapter 3 problems 26 (ans/hint quadrupole term: $\frac{k \pi^{2} R^{5}}{4 \pi \epsilon_{0} 48 z^{3}}$),

28 (ans/hint part b: $\frac{k R^{3} \cos \theta}{3 \epsilon_{0} r^{2}}$),
29 ($V_{\text {oct }}$ is proportional to $\left(5 \cos ^{3} \theta-3 \cos \theta\right)$),
31 (check limits as a goes to infinity, dipole moment goes to zero, etc),
33, 34.

