- 2.3.4 Use set builder notation to specify the following sets:
 - 1. The set of all integers greater than or equal to 5.
 - 2. The set of all even integers.
 - 3. The set of all positive rational numbers.
 - 4. The set of all real numbers greater than 1 and less than 7.
- **2.4.3** Assume the universal set for each variable is the set of integers. Write each of the following statements as an English sentence that does not use the symbols for quantifiers.
 - 1. $(\exists m)(\exists n)(m > n)$
 - 2. $(\exists m)(\forall n)(m > n)$
 - 3. $(\forall m)(\exists n)(m > n)$
 - 4. $(\forall m)(\forall n)(m > n)$
 - 5. $(\exists n)(\forall m)(m^2 > n)$
 - 6. $(\forall n)(\exists m)(m^2 > n)$

3.1.8 Determine if each of the following propositions is true or false. Justify each conclusion.

- 1. For all integers a and b, if $ab \equiv 0 \pmod{6}$, then $a \equiv 0 \pmod{6}$ or $b \equiv 0 \pmod{6}$.
- 2. For all $a \in \mathbb{Z}$, if $a^2 \equiv 4 \pmod{8}$, then $a \equiv 2 \pmod{8}$.