Lecture 8 Shadowitz parts of sections 1-5, 1-6, 1-7, and 3-3 may be covered. InkSurvey question for Friday Find de = di paded $F = q + \overline{B}$ Lorentz force $\overline{F} = (I A e \times \overline{B})$ d= RdQ(-sinQx+wdy) = -6 =Method (2) x2+y2=R2 => y= \(\begin{aligned} \times \frac{2}{2} \times \chi^2 \times \ 下=xx+yy=xx+JR2x2y di = dxx+ = \frac{1}{R^2-x^2}(-2xdx)y x goodron-RtoR Same answer from 60th methods but different variables! Or X

(3) Where does the Lorentz force come from?
(4) More examples of magnetic forces on wires.
Kilogram standard is in Paris. It is the least well known of our standards.
How to make it more accurate?
1030) F=
What problems arise?
Write problems unse.
la ka
J
\otimes
ka ka

- (7) 1-D motion of charge is meant to indicate motion in line across a surface or in a volume. Probably should be called line charge motion rather than 1-D
- (8) Look at the solutions to the exam for feedback if you didn't get full credit.
- (9) Ribbon of charge moving

What have we covered?

Calculate the force given B and the currents moving along a line, surface, or in a volume.

What are we going to cover?

Calculate B given currents

given currents Law of Bist + Savart
$$S(r) = \int dR = \mu_0 \int \Delta r' x(r-r') dr$$

アンメダナタダナマを

$$Td\hat{r}' = Rdd(-\sin(\hat{x} + \omega))$$

$$\hat{r} = R\cos(\hat{x} + R\sin(\hat{y}))$$

General result
$$\hat{B}(x,y,z) = \int d\vec{B} = \frac{A_0}{4\pi} \int \frac{\hat{J}(\hat{r}') \times (\hat{r} - \hat{r}')}{(\hat{r} - \hat{r}')^3} dx' dy' dz'$$

Interpretation of divergence: a measure of how the vector function spreads out (diverges) from the point at which it is calculated. It is used to indicate a source of the vector function.

The curl of a vector function is given by

It is a measure of how much the vector B curls around the point in question.

Sprinkle pine needles on a water surface. If there is a faucet just under the surface the needles will move away from each other. They diverge and the divergence of the velocity vector function is non-zero at the point of the faucet.

If the needles are in a vortex they move in circles or curl around that point. The curl of the velocity vector function is non-zero at the point of the vortex.