Tilted window: ray propagation

« Calculate phase shift caused by the insertion of the
window into an interferometer.
* Ray optics:
— Add up optical path for each segment
— Subtract optical path w/o window
Ad=nL,,+L,-—L,,, — L '
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— Use Snell's Law to reduce to: g,

Ad=nL cosO,— L cos6,




Tilted window: wave propagation

« \Write expression for tilted plane wave

E(x,z) =FE, exp[i(kxx + kzz)} =E, exp[ign(x sinf, +zcos0, )}
C

« Snell’s Law: phase across surfaces is conserved

o . :
k x=—nsin@ is constant i
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A = (k2 cost)Lw —

e This approach can be used
to calculate phase of prism
pairs and grating pairs




Multiple-beam interference:
The Fabry-Perot Interferometer or Etalon

A Fabry-Perot interferometer is a pair of parallel surfaces that reflect
beams back and forth. An etalon is a type of Fabry-Perot etalon, and is
a piece of glass with parallel sides.

The transmitted wave is an infinite series of multiply reflected beams.




Multiple-beam interference: general formulation
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r, t = reflection, transmission coefficients from air to glass
r,t= * “ “ from glass to air

O = round-trip phase delay inside medium = k,(2 n L cos 6,)
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Stokes Relations for reflection and transmission

(a)

“Time reversal:”
Same amplitudes,

reversed propagation
direction

Notes:

- relations apply to angles connected by Snell’ s Law
* true for any polarization, but not TIR

« convention for which interface experiences a sign change can vary
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Fabry-Perot transmission

The transmitted wave field is:
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Multiple-beam interference: simple limits
1

Reflected waves T =
1+ Fsin’ (5/ 2)

Full transmission: sin()=0,d=2mm

P 1st reflection
3 g
4 = } internal

reflections

Destructive interference
for reflected wave

L
E,, = 0 (Resultant amplitude)

Minimum transmission: sin( ) =1, d =2 n (m+1/2)
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Constructive interference for reflected wave



Etalon transmittance vs. thickness,

wavelength, or angle - 1
- —
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r?=0.18 sin()=0,d=21m

5=92nLcos[9t]
c

I z-o‘s’] =27l'm
0 F=20 At normal incidence:
-2r -m 0 = 2n 3 4r & nL ﬂ,
A, = or nL=m—2
m 2

* The transmittance varies significantly with thickness or wavelength.
« We can also vary the incidence angle, which also affects .

« As the reflectance of each surface (R=r?) approaches 1, the widths
of the high-transmission regions become very narrow.



The Etalon Free Spectral Range

The Free Spectral Range is the wavelength range between
transmission maxima.

Aesg =
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Range

For neighboring orders:
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Etalon Linewidth

The Linewidth oLw is a transmittance peak's full-width-half-max (FWHM).

1

T:1+Fsin2(5/2)

A maximum is where §/2=mx+8’/2 and sin’(6/2)=6"/2

Under these conditions (near resonance),
1

T = >
1+ Fo’" /4

This is a Lorentzian profile, with FWHM at:

2
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This transmission linewidth corresponds to the minimum resolvable
wavelength.




Etalon Finesse

The Finesse, 3, is the ratio of the
Free Spectral Range and the Linewidth:

O = 2m corresponds

/ to one FSR

3=5FSR _ 2rm 7 F

Q= taking 7 = 1

The Finesse is the number of wavelengths the interferometer can resolve.



Multilayer coatings

Typical laser mirrors and camera
lenses use many layers.

The reflectance and transmittance
can be custom designed
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Multilayer thin-films:
wave/matrix treatment

 Use boundary conditions to relate
fields at the boundaries

* Phase shifts connect fields just after I
~ to fields just before II

» Express this relation as a transfer

matrix

* Multiply matrices for multiple layers




High-reflector design
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Reflectivity can reach > 99.99% at a specific wavelength
> 99.5% for over 250nm
Bandwidth and reflectivity are better for “S” polarization.



Transmission %

Interference filter design
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A thin layer is sandwiched between two high reflector coatings
-very large free spectral range, high finesse
- typically 5-10nm bandwidth, available throughout UV to IR



