PH311 exam 1: 10/10/07 Do any four (and only four) of the following questions.

1: 25 points

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(7) Compute the inverse of this matrix.
(7) What is the characteristic polynomial of A ?
(7) What are the eigenvalues?
(4) Is this matrix diagonalizable?

2: 25 points Here is a simple model of radioactive decay. The model predicts that during a time interval T, a certain fraction P of a substance will decay and, hence, a fraction $(1-P)$ will not decay. Show that if we start with A undecayed nuclei, then the number of nuclei that decay on average during n periods of time is given by a geometric series:

$$
P A+P A(1-P)+P A(1-P) 2+\ldots+P A(1-P)^{(n-1)}
$$

Verify that that in the limit that n goes to infinity this sum equals A. Explain the physical significance of this result.

3: 25 points Without using a calculator to compute $\sin (.1)$ exactly, estimate the size of the error in the approximation $\sin (x) \approx x$ when $x=.1$ radians. Hint: McClaurin series.

4: 25 points Below are four matrices. One is Hermitian, one is symmetric, one is orthogonal and one is unitary. Which is which? Each part has equal weight.
(a)

$$
\left(\begin{array}{ccc}
1 & 2 i & 3+4 i \\
-2 i & 5 & 6-7 i \\
3-4 i & 6+7 i & 8
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\
0 & 0 & i
\end{array}\right)
$$

(c)

$$
\frac{1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{ccc}
66 & 78 & 90 \\
78 & 93 & 108 \\
90 & 108 & 126
\end{array}\right)
$$

5: 25 points Compute the amplitude and phase of the following complex numbers. Each part has equal weight.
(a)

$$
z=1+i \sqrt{3}
$$

(b)

$$
z=(1-i) /(1+i)
$$

(c)

$$
z=i^{5}+i^{6}
$$

(d)

$$
z=1 /(1-i)
$$

6: 25 points For the following linear system:

$$
\left(\begin{array}{cc}
-1 & 2 \\
1 & -2
\end{array}\right)\binom{x}{y}=\binom{1}{-1}
$$

(a) Without actually solving the linear system explain why it cannot have a unique solution.
(b) Find a solution.
(c) Find a vector which spans the null space.
(d) Give an analytic expression for the set of all possible solutions

