EM waves and interference

Review of EM wave equation and plane waves
Energy and intensity in EM waves
Interference

Maxwell's Equations to wave eqn

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\begin{array}{ll}
\vec{\nabla} \cdot \mathbf{E}=0 & \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\vec{\nabla} \cdot \mathbf{B}=0 & \vec{\nabla} \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}
\end{array}
$$

Take the curl:

$$
\vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=-\frac{\partial}{\partial t} \vec{\nabla} \times \mathbf{B}=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}+\mu_{0} \frac{\partial \mathbf{P}}{\partial t}\right)
$$

Use the vector ID:

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\
& \vec{\nabla} \times(\vec{\nabla} \times \mathbf{E})=\vec{\nabla}(\vec{\nabla} \cdot \mathbf{E})-(\vec{\nabla} \cdot \vec{\nabla}) \mathbf{E}=-\vec{\nabla}^{2} \mathbf{E} \\
& \vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}} \quad \text { "Inhomogeneous Wave Equation" }
\end{aligned}
$$

Wave equation in a medium

- The induced polarization, \mathbf{P}, contains the effect of the medium:

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}
$$

- Sinusoidal waves of all frequencies are solutions to the wave equation
- The polarization (\mathbf{P}) is sometimes a driving term for the waves (esp in nonlinear optics). In this case the polarization determines which frequencies will occur.
- For linear response, \mathbf{P} will oscillate at the same frequency as the input.

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

- In nonlinear optics, the induced polarization is more complicated:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0}\left(\chi^{(1)} \mathbf{E}+\chi^{(2)} \mathbf{E}^{2}+\chi^{(3)} \mathbf{E}^{3}+\ldots\right)
$$

- The extra nonlinear terms can lead to new frequencies.

Solving the wave equation: linear induced polarization

For low irradiances, the polarization is proportional to the incident field:

$$
\mathbf{P}(\mathbf{E})=\varepsilon_{0} \chi \mathbf{E}
$$

The displacement vector combines the effect of E and P

$$
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0}(1+\chi) \mathbf{E}=\varepsilon \mathbf{E}=n^{2} \mathbf{E}
$$

In this simple (and most common) case, the wave equation becomes:

$$
\begin{array}{ll}
\vec{\nabla}^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} & \rightarrow \vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \\
\text { Using: } \quad \varepsilon_{0} \mu_{0}=1 / c^{2} & \varepsilon_{0}(1+\chi)=\varepsilon=n^{2}
\end{array}
$$

\mathbf{D} does not always point in the same direction as \mathbf{E} :

- Birefringence: n is a function of linear polarization direction
- Optically activity: n is a function of circular polarization state
- In this case, X and ε are tensors operating on \mathbf{E} to change its direction

Vector wave equation

- The EM wave equation in vector form

$$
\vec{\nabla}^{2} \mathbf{E}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
$$

- \mathbf{E} is a vector that depends on \mathbf{r} and t
- Wave equation is actually a set of 3 equations:

$$
\begin{aligned}
& \vec{\nabla}^{2} E_{x}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{x}(\mathbf{r}, t)=0 \\
& \vec{\nabla}^{2} E_{y}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{y}(\mathbf{r}, t)=0 \\
& \vec{\nabla}^{2} E_{z}(\mathbf{r}, t)-\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} E_{z}(\mathbf{r}, t)=0
\end{aligned}
$$

Plane wave solutions for the wave equation

If we assume the solution has no dependence on x or y :

$$
\begin{aligned}
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t) \\
& \rightarrow \frac{\partial^{2} \mathbf{E}}{\partial z^{2}}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
\end{aligned}
$$

The solutions are oscillating functions, for example

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos \left(k_{z} z-\omega t\right)
$$

Where $\omega=k c, \quad k=2 \pi n / \lambda, \quad v_{p h}=c / n$
This is a linearly polarized wave.

Complex notation for waves

- Write cosine in terms of exponential

$$
\mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t+\phi)=\hat{\mathbf{x}} E_{x} \frac{1}{2}\left(e^{i(k z-\omega t+\phi)}+e^{-i(k z-\omega t+\phi)}\right)
$$

- Note E-field is a real quantity.
- It is convenient to work with just one part
- We will use

$$
E_{0} e^{+i(k z-\Delta t)}
$$

- Svelto:

$$
E_{0} e^{-i(k z-\omega t)}
$$

- Then take the real part.
- No factor of 2
- In nonlinear optics, we have to explicitly include conjugate term

Wave energy and intensity

- Both E and H fields have a corresponding energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)$
- For static fields (e.g. in
) the energy density can be calculated through the work done to set up the field

$$
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}
$$

- Some work is required to polarize the medium
- Energy is contained in both fields, but H field can be calculated from E field

Calculating H from E in a plane wave

- Assume a non-magnetic medium

$$
\begin{aligned}
& \mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t) \\
& \vec{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}
\end{aligned}
$$

- Can see \mathbf{H} is perpendicular to \mathbf{E}

$$
-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}=\vec{\nabla} \times \mathbf{E}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
E_{x} & 0 & 0
\end{array}\right|=\hat{\mathbf{y}} \partial_{z} E_{x}=-\hat{\mathbf{y}} k E_{x} \sin (k z-\omega t)
$$

- Integrate on time to get \mathbf{H}-field:
$\mathbf{H}=\hat{\mathbf{y}} \int \frac{k E_{x}}{\mu_{0}} \sin (k z-\omega t) d t=\hat{\mathbf{y}} \frac{k E_{x}}{\mu_{0}}\left(\frac{-\cos (k z-\omega t)}{-\omega}\right)=\hat{\mathbf{y}} \frac{k E_{x}}{\omega \mu_{0}} \cos (k z-\omega t)$

H field from E field

- H field for a propagating wave is in phase with Efield

$$
\begin{aligned}
& \mathbf{E}(z, t)=\hat{\mathbf{x}} E_{x} \cos (k z-\omega t) \\
& \mathbf{H}(z, t)=\hat{\mathbf{y}} \frac{k E_{x}}{\omega \mu_{0}} \cos (k z-\omega t)
\end{aligned}
$$

- Amplitudes are not independent

$$
\begin{aligned}
& H_{y}=\frac{k}{\omega \mu_{0}} E_{x} \quad k=n \frac{\omega}{c} \quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \rightarrow \frac{1}{\mu_{0} c}=\varepsilon_{0} c \\
& H_{y}=\frac{n}{c \mu_{0}} E_{x}=n \varepsilon_{0} c E_{x}
\end{aligned}
$$

Energy density in a traveling EM wave

- Back to energy density, non-magnetic

$$
\begin{array}{cc}
\rho=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu_{0} H^{2} & H=n \varepsilon_{0} c E \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \mu_{0} n^{2} \varepsilon_{0}{ }^{2} c^{2} E^{2} & \varepsilon=\varepsilon_{0} n^{2} \\
\mu_{0} \varepsilon_{0} c^{2}=1 & \\
\rho=\frac{1}{2} \varepsilon_{0} n^{2} E^{2}+\frac{1}{2} \varepsilon_{0} n^{2} E^{2}=\varepsilon_{0} n^{2} E_{0}{ }^{2} \cos ^{2}(k z-\omega t)
\end{array}
$$

Equal energy in both components of wave

Cycle-averaged energy density

- Optical oscillations are faster than detectors
- Average over one cycle:

$$
\langle\rho\rangle=\varepsilon_{0} n^{2} E_{0}{ }^{2} \frac{1}{T} \int_{0}^{T} \cos ^{2}\left(k_{z} z-\omega t\right) d t
$$

- Graphically, we can see this should $=1 / 2$

- Regardless of position z

$$
\langle\rho\rangle=\frac{1}{2} \varepsilon_{0} n^{2} E_{0}^{2}
$$

Intensity and the Poynting vector

- Intensity is an energy flux ($\mathrm{J} / \mathrm{s} / \mathrm{cm}^{2}$)
- In EM the Poynting vector give energy flux

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H}
$$

- For our plane wave,

$$
\begin{aligned}
\mathbf{S} & =\mathbf{E} \times \mathbf{H}=E_{0} \cos \left(k_{z} z-\omega t\right) n \varepsilon_{0} c E_{0} \cos \left(k_{z} z-\omega t\right) \hat{\mathbf{x}} \times \hat{\mathbf{y}} \\
\mathbf{S} & =n \varepsilon_{0} c E_{0}^{2} \cos ^{2}\left(k_{z} z-\omega t\right) \hat{\mathbf{z}} \\
& -\mathbf{S} \text { is along } \mathbf{k}
\end{aligned}
$$

- Time average: $\mathbf{S}=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2} \hat{\mathbf{z}}$
- Intensity is the magnitude of \mathbf{S}

$$
I=\frac{1}{2} n \varepsilon_{0} c E_{0}^{2}=\frac{c}{n} \rho=V_{\text {phase }} \cdot \rho \quad \text { Photon flux: } F=\frac{I}{h v}
$$

General 3D plane wave solution

- Assume separable function

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t) \sim f_{1}(x) f_{2}(y) f_{3}(z) g(t) \\
& \vec{\nabla}^{2} \mathbf{E}(z, t)=\frac{\partial^{2}}{\partial x^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial y^{2}} \mathbf{E}(z, t)+\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}(z, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(z, t)
\end{aligned}
$$

- Solution takes the form:

$$
\begin{aligned}
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z} e^{-i \omega t}=\mathbf{E}_{0} e^{i\left(k_{x} x+k_{y}, y+k_{z} z\right)} e^{-i \omega t} \\
& \mathbf{E}(x, y, z, t)=\mathbf{E}_{0} e^{i(\mathbf{k}-\omega t)}
\end{aligned}
$$

- Now k -vector can point in arbitrary direction
- With this solution in W.E.:

$$
n^{2} \frac{\omega^{2}}{c^{2}}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\mathbf{k} \cdot \mathbf{k}
$$

Valid even in waveguides and resonators

Grad and curl of 3D plane waves

- Simple trick:

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}
$$

- For a plane wave,

$$
\nabla \cdot \mathbf{E}=i\left(k_{x} E_{x}+k_{y} E_{y}+k_{z} E_{z}\right)=i(\mathbf{k} \cdot \mathbf{E})
$$

- Similarly,

$$
\nabla \times \mathbf{E}=i(\mathbf{k} \times \mathbf{E})
$$

- Consequence: since $\nabla \cdot \mathbf{E}=0, \mathbf{k} \perp \mathbf{E}$
- For a given \mathbf{k} direction, \mathbf{E} lies in a plane
- E.g. \mathbf{x} and \mathbf{y} linear polarization for a wave propagating in \mathbf{z} direction

Writing electric field expressions

- Write an expression for a complex E-field as shown:

$$
\mathbf{E}(y, z, t)=E_{0}[\hat{\mathbf{y}} \cos \theta-\hat{\mathbf{z}} \sin \theta] e^{i(k y \sin \theta+k z \cos \theta-\omega t)}
$$

Interference: ray and wave pictures

- Interference results from the sum of two waves with different phase:

$$
E_{t o t}(\Delta \phi)=E_{1} e^{i k z}+E_{2} e^{i k z+\Delta \phi}
$$

- We measure intensity, which leads to interference

$$
\begin{aligned}
& I_{\text {tot }}(\Delta \phi) \propto\left|E_{1} e^{i k z}+E_{2} e^{i k+\Delta \phi}\right|^{2}=\left|E_{1}+E_{2} e^{i \Delta \phi}\right|^{2} \\
& =I_{1}+I_{2}+\sqrt{I_{1} I_{2}} e^{i \Delta \phi}+\sqrt{I_{1} I_{2}} e^{-i \Delta \phi} \\
& =I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (\Delta \phi)
\end{aligned}
$$

- For the case where $I_{1}=I_{2}$,

$$
I_{\text {tot }}(\Delta \phi)=2 I(1+\cos (\Delta \phi))=4 I \cos ^{2}(\Delta \phi / 2)
$$

- How to generate, calculate phase difference?

The Fizeau Wedge Interferometer

The Fizeau wedge yields a complex pattern of variable-width fringes, but it can be used to measure the wavelength of a laser beam.

Fizeau wedge calculation

- Interference between reflections from internal surfaces

- Angle is very small, neglect change in direction
- Path difference: $\Delta l=2 L \sin \alpha \approx 2 L \alpha$
- Phase difference: $\Delta \phi=\frac{\omega}{c} n \Delta l \approx 2 \pi \frac{2 L}{\lambda} \alpha \quad \mathrm{n}=1$
- Interference: $\quad I_{\text {tot }}(\Delta \phi)=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (\Delta \phi)$
- One fringe from one max to the next, so maxima are at $\Delta \phi=2 \pi m$
- In this interferometer, minimum path $=0$, we can measure absolute wavelength: $\Delta \phi=2 \pi m=2 \pi \frac{2 L}{\lambda} \alpha \rightarrow \lambda=\frac{2 L}{m} \alpha$

Newton's Rings

Newton's Rings

Get constructive interference when an integral number of half wavelengths occur between the two surfaces (that is, when an integral number of full wavelengths occur between the path of the transmitted beam and the twice reflected beam).

This effect also causes the colors in bubbles and oil films on puddles.

Curved wavefronts

- Rays are directed normal to surfaces of constant phase
- These surfaces are the wavefronts
- Radius of curvature is approximately at the focal point

- Spherical waves are solutions to the wave equation (away from $r=0$)

$$
\nabla^{2} E+\frac{n^{2} \omega^{2}}{c^{2}} E=0 \quad E \propto \frac{1}{r} e^{i(\pm k r-\omega t)} \quad \begin{aligned}
& \text { Scalar r } \\
& + \text { outward } \\
& - \text { inward }
\end{aligned} \quad I \propto \frac{1}{r^{2}}
$$

Paraxial approximations

- For rays, paraxial = small angle to optical axis
- Ray slope: $\tan \theta \approx \theta$
- For spherical waves where power is directed forward:

$$
\begin{aligned}
& e^{i k r}=\exp \left[i k \sqrt{x^{2}+y^{2}+z^{2}}\right] \\
& k \sqrt{x^{2}+y^{2}+z^{2}}=k z \sqrt{1+\frac{x^{2}+y^{2}}{z^{2}}} \approx k z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right) \quad \begin{array}{l}
\text { Expanding to } \\
1^{\text {st }} \text { order }
\end{array} \\
& e^{i(k r-\omega t)} \rightarrow e^{i k z} \exp \left[i\left(k \frac{x^{2}+y^{2}}{2 z}-\omega t\right)\right] \quad z \text { is radius of curvature }=R
\end{aligned}
$$

Wavefront = surface of constant phase For $\mathrm{x}, \mathrm{y}>0$, t must increase.

$$
\phi=0 \rightarrow k \frac{x^{2}+y^{2}}{2 R}=\omega t
$$ Wave is diverging:

Newton's rings: interfere plane and spherical waves

- Add two fields:

$$
E(r)=E_{0}+E_{0} e^{i \frac{k r^{2}}{2 R}}
$$

- Assume equal amplitude

- For Newton's rings, $2 x$ phase shift
- Calculate intensity:

$$
\left.I(r) \propto\left|E_{0}+E_{0} e^{\frac{k r^{2}}{2 R}}\right|^{2}=2 E_{0}^{2}+2 E_{0}^{2} \cos \left(\frac{k r^{2}}{2 R}\right) \right\rvert\,
$$

- Local k increases with r

$$
\cos \left(\frac{k r}{2 R} r\right)=\cos \left(k_{\text {local }} r\right)
$$

Shearing interferometer

- Combine two waves with a lateral offset ("shear")

$I_{\text {tot }}(x)=I_{0}\left(2+\exp \left[i\left(\frac{k\left(x-x_{s}\right)^{2}}{2 R}-\frac{k\left(x+x_{s}\right)^{2}}{2 R}\right)\right]+c . c.\right)$
$\left(x-x_{s}\right)^{2}-\left(x+x_{s}\right)^{2}=x^{2}-2 x x_{s}+x_{s}^{2}-\left(x^{2}+2 x x_{s}+x_{s}^{2}\right)=4 x x_{s}$
$I_{\text {tot }}(x)=2 I_{0}\left(1+\cos \left[\frac{2 k x_{s}}{R} x\right]\right) \begin{aligned} & \text { Fringes are straight, equally spaced } \\ & \text { Combine with constant tilt in y direction: } \\ & \text { leads to fringe rotation with divergence }\end{aligned}$

Tilted window: ray propagation

- Calculate phase shift caused by the insertion of the window into an interferometer.
- Ray optics:
- Add up optical path for each segment
- Subtract optical path w/o window

$$
\Delta d=n L_{A B}+L_{B C}-L_{A B^{\prime}}-L_{B^{\prime} C^{\prime}}
$$

$$
L_{A B}=\frac{L_{w}}{\cos \theta_{2}} \quad L_{A B^{\prime}}=\frac{L_{w}}{\cos \theta_{1}}
$$

$$
L_{B C}=L_{B^{\prime} C^{\prime}}+L_{B B^{\prime}} \sin \theta_{1}
$$

- Use Snell's Law to reduce to:
$\Delta d=n L_{w} \cos \theta_{2}-L_{w} \cos \theta_{1}$

Tilted window: wave propagation

- Write expression for tilted plane wave

$$
E(x, z)=E_{0} \exp \left[i\left(k_{x} x+k_{z} z\right)\right]=E_{0} \exp \left[i \frac{\omega}{c} n\left(x \sin \theta_{2}+z \cos \theta_{2}\right)\right]
$$

- Snell's Law: phase across surfaces is conserved

$$
k_{x} x=\frac{\omega}{c} n \sin \theta \quad \text { is constant }
$$

$$
\Delta \phi=\left(k_{2} \cos \theta_{2}\right) L_{w}-\left(k_{1} \cos \theta_{1}\right) L_{w}
$$

- This approach can be used to calculate phase of prism pairs and grating pairs

Multiple-beam interference:
 The Fabry-Perot Interferometer or Etalon

A Fabry-Perot interferometer is a pair of parallel surfaces that reflect beams back and forth. An etalon is a type of Fabry-Perot etalon, and is a piece of glass with parallel sides.
The transmitted wave is an infinite series of multiply reflected beams.

Multiple-beam interference: general formulation

$r, t=$ reflection, transmission coefficients from air to glass $r^{\prime}, t^{\prime}=$ " " from glass to air $\delta=$ round-trip phase delay inside medium $=k_{0}\left(2 n L \cos \theta_{t}\right)$

Transmitted wave:

$$
E_{0 t}=t t^{\prime} e^{-i \delta / 2} E_{0}\left(1+\left(r^{\prime}\right)^{2} e^{i \delta}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{3}+\ldots\right)
$$

Reflected wave:

$$
E_{0 r}=r E_{0}+t t^{\prime} r^{\prime} e^{i \delta} E_{0}+t t^{\prime} r^{\prime}\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2} E_{0}+\ldots
$$

Stokes Relations for reflection and transmission

(a)
"Time reversal:" Same amplitudes, reversed propagation direction

Notes:

- relations apply to angles connected by Snell's Law
- true for any polarization, but not TIR
- convention for which interface experiences a sign change can vary

Fabry-Perot transmission

The transmitted wave field is:
Stokes' $r^{\prime}=-r$
relations $r^{\prime 2}=r^{2}$
$t t^{\prime}=1-r^{2}$
$E_{0 t}=t t^{\prime} e^{i \delta / 2} E_{0}\left(1+\left(r^{\prime}\right)^{2} e^{i \delta}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{2}+\left(\left(r^{\prime}\right)^{2} e^{i \delta}\right)^{3}+\ldots\right)$
$=t t^{\prime} e^{i \delta / 2} E_{0}\left(1+r^{2} e^{i \delta}+\left(r^{2} e^{i \delta}\right)^{2}+\left(r^{2} e^{i \delta}\right)^{3}+\ldots\right)=t t^{\prime} e^{i \delta / 2} E_{0} \sum_{n=0}^{\infty}\left(r^{2} e^{i \delta}\right)^{n}$
$\Rightarrow \quad E_{0 t}=\frac{t t^{\prime} e^{i \delta / 2}}{1-r^{2} e^{-i \delta}} E_{0}$
Where:

Power transmittance: $\quad T \equiv\left|\frac{E_{0 t}}{E_{0}}\right|^{2}=\left|\frac{t t^{\prime} e^{i \delta / 2}}{1-r^{2} e^{i \delta}}\right|^{2}=\frac{\left(t t^{\prime}\right)^{2}}{\left(1-r^{2} e^{+i \delta}\right)\left(1-r^{2} e^{-i \delta}\right)}$

$$
=\left[\frac{\left(t t^{\prime}\right)^{2}}{\left\{1+r^{4}-2 r^{2} \cos \delta\right\}}\right]=\left[\frac{\left(1-r^{2}\right)^{2}}{\left\{1+r^{4}-2 r^{2}\left[1-2 \sin ^{2}(\delta / 2)\right]\right\}}\right]=\left[\frac{\left(1-r^{2}\right)^{2}}{\left.\left\{1-2 r^{2}+r^{4}+4 r^{2} \sin ^{2}(\delta / 2)\right]\right\}}\right]
$$

Dividing numerator and denominator by $\left(1-r^{2}\right)^{2}$

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)} \quad \text { where: } \quad F=\left[\frac{2 r}{1-r^{2}}\right]^{2}
$$

Multiple-beam interference: simple limits

Reflected waves

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

Full transmission: $\sin ()=0, d=2 \pi m$

Minimum transmission: $\sin ()=1, d=2 \pi(m+1 / 2)$

Constructive interference for reflected wave

wavelength, or angle

Etalon transmittance vs. thickness,

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

Transmission max: $\sin ()=0, d=2 \pi m$

$$
\begin{aligned}
\delta & =\frac{\omega}{c} 2 n L \cos \left[\theta_{t}\right] \\
& =2 \pi m
\end{aligned}
$$

At normal incidence:

$$
\lambda_{m}=\frac{2 n L}{m} \quad \text { or } \quad n L=m \frac{\lambda_{m}}{2}
$$

- The transmittance varies significantly with thickness or wavelength.
- We can also vary the incidence angle, which also affects δ.
- As the reflectance of each surface $\left(R=r^{2}\right)$ approaches 1 , the widths of the high-transmission regions become very narrow.

The Etalon Free Spectral Range

The Free Spectral Range is the wavelength range between transmission maxima.

$$
\begin{gathered}
\lambda_{\mathrm{FSR}}= \\
\text { Free Spectral } \\
\text { Range }
\end{gathered}
$$

For neighboring orders:

$$
\frac{4 \pi n L}{\lambda_{1}}-\frac{4 \pi n L}{\lambda_{2}}=2 \pi \Rightarrow \frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}=\frac{1}{2 n L}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}
$$

$$
\lambda_{2}-\lambda_{1}=\lambda_{F S R}
$$

$$
\lambda_{2} \lambda_{1} \approx \lambda^{2}
$$

$$
\lambda_{F S R} \approx \frac{\lambda^{2}}{2 n L}
$$

$$
\frac{\lambda_{F S R}}{\lambda}=\frac{\lambda}{2 n L}=\frac{v_{F S R}}{v}
$$

$$
V_{F S R} \approx \frac{c}{2 n L}
$$

Etalon Linewidth

The Linewidth $\delta\llcorner w$ is a transmittance peak's full-width-half-max (FWHM).

$$
T=\frac{1}{1+F \sin ^{2}(\delta / 2)}
$$

A maximum is where $\delta / 2 \approx m \pi+\delta^{\prime} / 2$ and $\sin ^{2}(\delta / 2) \approx \delta^{\prime} / 2$
Under these conditions (near resonance),

$$
T=\frac{1}{1+F \delta^{\prime 2} / 4}
$$

This is a Lorentzian profile, with FWHM at:

$$
\frac{F}{4}\left(\frac{\delta_{L W}}{2}\right)^{2}=1 \Rightarrow \delta_{L W} \approx 4 / \sqrt{F}
$$

This transmission linewidth corresponds to the minimum resolvable wavelength.

Etalon Finesseच

The Finesse, \mathfrak{I}, is the ratio of the
Free Spectral Range and the Linewidth:

$$
\mathfrak{I} \equiv \frac{\delta_{F S R}}{\delta_{F W}}=\frac{2 \pi}{4 / \sqrt{F}}=\frac{\pi \sqrt{F}}{2} \quad \begin{aligned}
& \delta=2 \pi \text { corresponds } \\
& \text { to one FSR }
\end{aligned}
$$

Using: $\quad F=\left[\frac{2 r}{1-r^{2}}\right]^{2}$

$$
\mathfrak{I}=\frac{\pi}{1-r^{2}} \quad \text { taking } r \approx 1
$$

The Finesse is the number of wavelengths the interferometer can resolve.

Tools: scanning Fabry-Perot

Resonator with piezo control over mirror separation

- Wavelength range:

535-820nm (ours)

- SA200 (ours)
- FSR 1.5 GHz
- Finesse > 200
- Resolution 7.5 MHz
- SA210
- FSR 10 GHz
- Finesse > 150

- Resolution 67 MHz

Tools: fixed plate Fabry-Perot

Multilayer coatings

Typical laser mirrors and camera lenses use many layers.

The reflectance and transmittance can be custom designed

gHLa

$$
\begin{gathered}
g H L H L H L a \\
g(H L)^{3} a
\end{gathered}
$$

Quarter-wave stack

Multilayer thin-films: wave/matrix treatment

- Use boundary conditions to relate fields at the boundaries
- Phase shifts connect fields just after I to fields just before II
- Express this relation as a transfer matrix
- Multiply matrices for multiple layers

High-reflector design

Reflectivity can reach > 99.99\% at a specific wavelength > 99.5\% for over 250 nm
Bandwidth and reflectivity are better for " S " polarization.

Interference filter design

A thin layer is sandwiched between two high reflector coatings -very large free spectral range, high finesse

- typically 5-10nm bandwidth, available throughout UV to IR

Raytracing: single curved interface

$$
\text { Snell: } n_{1} \sin \left(\theta_{i}\right)=n_{2} \sin \left(\theta_{r}\right)
$$

$$
\begin{aligned}
& \frac{y_{1}}{p}=\tan \left(\theta_{i}-\phi\right) \approx \theta_{i}-\phi \\
& \frac{y_{1}}{q}=\tan \left(\phi-\theta_{r}\right) \approx \phi-\theta_{r} \\
& \frac{y_{1}}{R_{1}}=\sin (\phi) \approx \phi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n_{2}}{n_{1}}=\frac{\sin \left(\theta_{i}\right)}{\sin \left(\theta_{r}\right)} \approx \frac{\theta_{i}}{\theta_{r}}=\frac{\phi+\frac{y_{1}}{p}}{\phi-\frac{y_{1}}{q}}=\frac{\frac{y_{1}}{R_{1}}+\frac{y_{1}}{p}}{\frac{y_{1}}{R_{1}}-\frac{y_{1}}{q}}=\frac{\frac{1}{R_{1}}+\frac{1}{p}}{\frac{1}{R_{1}}-\frac{1}{q}} \quad \text { In paraxial appx, y' s cancel } \\
& n_{2}\left(\frac{1}{R_{1}}-\frac{1}{q}\right)=n_{1}\left(\frac{1}{R_{1}}+\frac{1}{p}\right) \rightarrow \frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}
\end{aligned}
$$

Raytracing: two curved interfaces

- add second interface: $\mathrm{R}>0$ if center is to right
- assume $y_{2}=y_{1}$

Eqn from 1st:

$\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}$
Adapt to 2nd interface:

$$
\begin{aligned}
& n_{1} \leftrightarrow n_{2} \quad q \rightarrow q^{\prime} \quad p \rightarrow-q \\
& \rightarrow \frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{n_{2}}{q}
\end{aligned}
$$

p

Solve eqn1 for image distance
$\rightarrow \frac{n_{2}}{q}=\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)-\frac{n_{1}}{p}$
$\frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)+\frac{n_{1}}{p}$
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{q^{\prime}}+\frac{1}{p}$
n_{1}
n_{1}
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{f}$
Focal length (lensmaker's eqn)
$\frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \quad$ Imaging equation

Raytracing

- Approches:
- Paraxial tracing (assume small angle to optical axis)
- Computer tracing (no approximations). Example: Zemax, Oslo,...
- Design procedure
- Find existing design close to what could work
- Paraxial trace with ray diagram
- Calculate magnification, limiting apertures
- Optimize with ABCD matrices or computer program
- Analyze aberrations

ABCD ray matrices

- Formalism to propagate rays through optical systems
- Keep track of ray height r and ray angle $\theta=d r / d z=r$
- Treat this pair as a vector:

$$
\binom{r}{r^{\prime}}
$$

- Optical system will modify both the ray height and angle, e.g.

$$
\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}
$$

- Successive ABCD matrices multiply from the left
- Translation

$$
\begin{aligned}
& r_{2}=r_{1}+L r_{1}^{\prime} \\
& r_{2}^{\prime}=r_{1}^{\prime}
\end{aligned} \rightarrow\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

Refraction in ABCD

- Translation: $\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$
- Flat interface

$$
\begin{array}{lll}
r_{2}=r_{1} & \begin{array}{ll}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
n_{1} \theta_{1} \approx n_{2} \theta_{2}
\end{array} & \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & n_{1} / n_{2}
\end{array}\right) \\
& \begin{array}{c}
r_{2}^{\prime}=\frac{n_{1}}{n_{2}} r_{1}^{\prime} \\
\\
\\
n_{1}=1, n_{2}=n
\end{array}
\end{array} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right)
$$

- Window: calculate matrix

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \\
& \quad=\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L / n \\
0 & 1 / n
\end{array}\right)=\left(\begin{array}{cc}
1 & L / n \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Effective thickness reduced by n

Curved surfaces in ABCD

- Thin lens: matrix computes transition from one side of lens to other

$$
\frac{1}{q}=\frac{1}{f}-\frac{1}{p} \quad \rightarrow r_{2}^{\prime}=-r_{1}\left(\frac{1}{f}-\frac{1}{p}\right)=-\frac{r_{1}}{f}+r_{1}^{\prime} \quad \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

- Spherical interface: radius R
$\rightarrow\left(\begin{array}{cc}1 & 0 \\ \frac{n_{1}-n_{2}}{n_{2}} \frac{1}{R} & \frac{n_{1}}{n_{2}}\end{array}\right)$

3D wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}{ }^{2} \mathbf{E}-\frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- Previously, we assumed plane waves where transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

Paraxial, slowly-varying approximations

- Assume
- waves are forward-propagating:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{A}(\mathbf{r}) e^{i\left(k z-\omega_{0} t\right)}+\text { c.c. }
$$

- Refractive index is isotropic

$$
\frac{\partial^{2}}{\partial z^{2}} \mathbf{A}+2 i k \frac{\partial}{\partial z} \mathbf{A}-k^{2} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}+\frac{n^{2} \omega_{0}{ }^{2}}{c^{2}} \mathbf{A}=0
$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
- Drop $2^{\text {nd }}$ order deriv if $\frac{2 \pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^{2}} A$
- This ignores:
- Changes in z as fast as the wavlength
- Counterpropagating waves

Gaussian beam solutions to wave equation

- Without any source term, paraxial equation is

$$
2 i k \frac{\partial}{\partial z} \mathbf{A}+\nabla_{\perp}^{2} \mathbf{A}=0
$$

- Gaussian beam solutions can be written as:

$$
A(r, z)=A_{0} \frac{1}{1+i \xi} e^{-\frac{r^{2}}{w_{0}^{2}(1+i \xi)}} \quad \xi=\frac{z}{z_{R}} \quad z_{R}=n \frac{\pi w_{0}^{2}}{\lambda}=\frac{k w_{0}^{2}}{2}
$$

Rayleigh range

$$
E(r, z, t)=A_{0} \frac{w_{0}}{w(z)} e^{i(k z-\omega t)} e^{-\frac{r^{2}}{w^{2}(z)}} e^{i \frac{k r^{2}}{2 R(z)}} e^{-i \eta(z)}
$$

Standard form of Gaussian beam equations

$E(r, z, t)=A_{0} \frac{w_{0}}{w(z)} e^{i(k z-\omega t)} e^{-\frac{r^{2}}{w^{2}(z)}} e^{i \frac{k r^{2}}{2 R(z)}} e^{-i \eta(z)}$
$w(z)=w_{0} \sqrt{1+\frac{z^{2}}{z_{R}^{2}}}$
$R(z)=z\left(1+\frac{z_{R}^{2}}{z^{2}}\right)$

Gouy phase
$\eta(z)=\arctan \left(\frac{z}{z_{R}}\right)$

Complex q form for Gaussian beam

- This combines beam size and radius of curvature into one complex parameter
- This form is used for for ABCD calculations

$$
\begin{aligned}
& \begin{aligned}
A(r, z) & =A_{0} \frac{1}{1+i \xi} \xi^{-\frac{r^{2}}{w_{0}^{2}(1+i \xi)}} \quad \rightarrow A(r, z)=\frac{1}{q(z)} e^{-i k \frac{r^{2}}{2 q(z)}} \\
\begin{aligned}
\frac{1}{q(z)} & =\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)} \\
q(z) & =\frac{1}{z+i z_{R}}=\frac{z}{z^{2}+z_{R}^{2}}-i \frac{z_{R}}{z^{2}+z_{R}^{2}} \quad \frac{1}{R(z)}=\frac{1}{z\left(1+\frac{z_{R}^{2}}{z^{2}}\right)}=\frac{z}{z^{2}+z_{R}^{2}} \\
& =\frac{1}{R(z)}-i \frac{w_{0}^{2}}{z_{R} w^{2}(z)} \\
& =\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}=\frac{1}{R(z)}-i \frac{1}{Z(z)}
\end{aligned} & \frac{1}{w^{2}(z)}=\frac{1}{w_{0}^{2}\left(1+\frac{z^{2}}{z_{R}^{2}}\right)}=\frac{z_{R}^{2}}{w_{0}^{2}\left(z^{2}+z_{R}^{2}\right)}
\end{aligned}
\end{aligned}
$$

Complex \mathbf{q} vs standard form

$$
u(r, z)=\frac{1}{q(z)} e^{-i \frac{r^{2}}{2 q(z)}} \quad \text { with } \quad \frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}
$$

Expand exponential:

$$
\begin{aligned}
& \exp \left[-i k \frac{r^{2}}{2 q(z)}\right]=\exp \left[-i k \frac{r^{2}}{2}\left(\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}\right)\right] \\
& =\exp \left[-i k \frac{r^{2}}{2} \frac{1}{R(z)}-i \frac{2 \pi}{\lambda} \frac{r^{2}}{2}\left(-i \frac{\lambda}{\pi w^{2}(z)}\right)\right]=e^{-i k \frac{r^{2}}{2 R(z)}} e^{-\frac{r^{2}}{w^{2}(z)}}
\end{aligned}
$$

Expand leading inverse q :

$$
a+i b=\sqrt{a^{2}+b^{2}} e^{i \arctan (b / a)}
$$

$$
\begin{aligned}
& \frac{1}{q(z)}=-i\left(\frac{i z}{z^{2}+z_{R}^{2}}+\frac{z_{R}}{z^{2}+z_{R}^{2}}\right)=-i\left(\frac{\sqrt{z^{2}+z_{R}^{2}}}{z^{2}+z_{R}^{2}}\right) e^{i \arctan \left(z / z_{R}\right)} \\
& =-i\left(\frac{1}{z_{R} \sqrt{1+z^{2} / z_{R}^{2}}}\right) e^{i \arctan \left(z / z_{R}\right)}=\frac{w_{0}}{i z_{R} w(z)} e^{i \eta(z)}
\end{aligned}
$$

Difference between Siegman's complex q and standard form

$$
\begin{aligned}
& u(r, z)=\frac{1}{q(z)} e^{-i k \frac{r^{2}}{2 q(z)}}=\frac{1}{i z_{R}} \frac{w_{0}}{w(z)} e^{i \eta(z)} e^{-i k \frac{r^{2}}{2 R(z)}} e^{-\frac{r^{2}}{w^{2}(z)}} \\
& E(r, z, t)=A_{0} \frac{w_{0}}{w(z)} e^{i(k z-\omega t)} e^{-\frac{r^{2}}{w^{2}(z)}} e^{i \frac{k r^{2}}{2 R(z)}} e^{-i \eta(z)}
\end{aligned}
$$

- Siegman's form for the complex q is used almost everywhere for the ABCD calculations.
- He uses the $\exp [+I$ w t] convention, which accounts for the sign difference in the complex exponentials.
- With $\exp [-I \mathrm{w} t]$ convention, define q as:

$$
\frac{1}{q(z)}=\frac{1}{R(z)}+i \frac{\lambda}{\pi w^{2}(z)}=\frac{1}{z-i z_{R}}
$$

Compare Boyd's form to standard:

- Boyd's complex form is consistent with standard Gaussian beam form

$$
\begin{aligned}
& A(r, z)=A_{0} \frac{1}{1+i \xi} e^{-\frac{r^{2}}{x_{0}^{2}(1+i \xi)}}=A_{0} \frac{1}{1+i z / z_{R}} e^{-\frac{r^{2}}{z_{0}^{2}\left(1+z z_{k}\right)}} \\
& \frac{1}{1+i \xi}=\frac{1}{1+i z / z_{R}}=\frac{z_{R}}{z_{R}+i z}=\frac{-i z_{R}}{z-i z_{R}}=\frac{-i z_{R}}{q(z)}
\end{aligned}
$$

