1-D salt crystal

Questions?

How do I calculate the work required to bring in another atom (congruous)?

$$W_{Me} = -\int q\vec{E} \cdot d\vec{r} = g(-\int \vec{E} \cdot d\vec{r}) = g(V_{B} - V_{A})$$

$$D = \infty$$

x-ray data yields s.

	Questions:
	Let the next charge be at infinity. Let it go.
D =	Wme = A(KE+PE): (KE+PE) = (KE+PE) = D
	Whome conservative
	How much work do I have to do to assemble the crystal (congrous)?

Voltage at the point where dq is placed due to the charges already present but NOT the charges yet to be brought in.

Questions:

How do you calculate this in a simple example (congrous)?

How much work do I have to do to assemble a uniformly charged sphere?

To bring in the first dq requires no work since V present is zero.

What do I bring in next (congruous)?

$$W = \int \frac{1}{4\pi \epsilon_0} \int \frac{(4\pi)^2}{3} r dr = \frac{4\pi \rho R}{15}$$

Questions
•
$W = \int V dq$
Analagous questions about electricity and magnetism?
Analagous questions about electricity and magnetism
http://en.wikipedia.org/wiki/Gravitoelectromagnetism
http://en.wikipedia.org/wiki/Gravitoelectromagnetism http://en.wikipedia.org/wiki/Gravitoelectromagnetism
http://en.wikipedia.org/wiki/Gravitoelectromagnetism
http://en.wikipedia.org/wiki/Gravitoelectromagnetism
http://en.wikipedia.org/wiki/Gravitoelectromagnetism

Hov	do I calculate the work if it is eas	y to determine the	voltage at every point
in t	ne charge distribution due to all the	e charges that are	present?

This voltage is NOT the voltage due to only the charges that have been brought it!!!

Questions

How do I calculate the work required given the voltage at each point in the charge distribution due to all charges present (congruous)?

What simple exam can I use to understand how this is done (modifying)?

Use a three charges to find work (two is too simple and four too complicated).

Let charge 1 be brought in first, then charge 2, then charge 3.

9.92 N.2

1293 + 9,93 M23 M3

What is the voltage at each charge due to all others (informational)?

$$W_{me} = \frac{1}{4\pi\epsilon_{0}} \left(\frac{9.92}{\pi_{12}} + \frac{9.93}{\pi_{13}} + \frac{9.293}{\pi_{23}} \right)$$

$$= \frac{1}{4\pi t} \left\{ g_{1} \left(\frac{g^{2} + g^{3}}{n_{12}} \right) + g_{2} \left(\frac{g_{3}}{n_{23}} + \frac{g_{1}}{n_{12}} \right) + g_{3} \left(\frac{g_{1} + g^{2}}{n_{13}} \right) + g_{3} \left(\frac{g_{1} + g^{2}}{n_{13}} \right) \right\}$$

$$= \frac{1}{4\pi t} \left\{ g_{1} \left(\frac{g_{2} + g_{3}}{n_{12}} \right) + g_{2} \left(\frac{g_{3}}{n_{23}} + \frac{g_{1}}{n_{12}} \right) + g_{3} \left(\frac{g_{1} + g^{2}}{n_{13}} \right)$$

Questions