
Dispersion 
Connections: susceptibility, dielectric constant, refractive index 

Microscopic to macroscopic material response 

Review of classical oscillator model for dispersion 

Complex refractive index, damped propagation 



Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  For linear response, P will oscillate at the same frequency as the input. 

•  Then once we know the susceptibility χ, we can calculate the dielectric 
constant and the refractive index: 
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Connecting the macroscopic to the 
microscopic response 
So determining the gain or loss coefficient depends on calculating the 
macroscopic induced polarization P or equivalently the susceptibility χ. #

   P E( ) = ε0χE = Nap

Note that the macrosopic polarization is really a density of individual 
dipole moments on the microscopic scale. #
Recall:#

So if the electric field is linearly 
polarized in the x-direction, 
then#
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Here we treat x(t) as the position of the electron. #



Spring model for dipole response 
•  Model: driven SHO with damping 
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x is fcn of t, but 
the amplitude x0 
depends on ω 

External driving field, 
specific ω 

Restoring force, 
resonant at ω0 

Radiation damping 
term γ 



Spring model for dispersion 
•  Now we can go from the microscopic response 

x(t) to the macroscopic χ and n 
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Note that this gives us the frequency response of the system.  



Spring model: refractive index 
•  Linear susceptibility yields the refractive index: 

•  Solve for the Re and Im parts: 

•  Near a resonance,  

n2 ω( ) = 1+ χ (1) ω( ) = 1+ Nae
2

ε0me

1
D ω( )

n2 ω( ) = 1+ Nae
2

ε0me

1
ω 0

2 − iωγ −ω 2
Refractive index is a 
complex quantity. 
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Complex refractive index near 
resonance 

 
•  For low atomic density (e.g. gas)  n ≈1
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Lorentzian: FWHM = γ 



Complex refractive index 
•  When the incident light is near resonance, both 

Re and Im parts of n(ω) are important.  
–  What is the meaning of a complex refractive index?  
–  For a plane wave propagating in the z-direction: 
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For nI > 0, absorption 
coefficient is 

α = ω nI
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For nI < 0, gain 
coefficient is g =
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refractive index for real gases 
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•  In a real atom or molecule, there are many resonances 

http://www.ece.tufts.edu/research/mm-smm/facility/gases.html 


