
which it depends are experimentally controlled parameters. This is perhaps
easiest to see when one considers the thermodynamic identities they satisfy:

dU = T dS − P dV + µdN

=
(

∂U

∂S

)
V,N

dS +
(

∂U

∂V

)
S,N

dV +
(

∂U

∂N

)
S,V

dN

dH = dU + P dV + V dP

= T dS + V dP + µdN

=
(

∂H

∂S

)
P,N

dS +
(

∂H

∂P

)
S,N

dP +
(

∂H

∂N

)
S,P

dN

dF = dU − T dS − S dT

= −S dT − P dV + µdN

=
(

∂F

∂T

)
V,N

dT +
(

∂F

∂V

)
T,N

dV +
(

∂F

∂N

)
T,V

dN

dG = dU − T dS − S dT + P dV + V dP

= −S dT + V dP + µdN

=
(

∂G

∂T

)
P,N

dT +
(

∂G

∂P

)
T,N

dP +
(

∂G

∂N

)
T,P

dN .

(29)

[EOC, Mon. 2/27/2006, #21; HW07 remains open]

[EOC, Wed. 3/1/2006, #22; Review for exam 1]

[EOC, Fri. 3/3/2006, #23; Exam 1]

So, for example, the Helmholtz free energy F is convenient when the
temperature is constant, so that dT = 0 and changes in F depend only
on changes in volume and particle number. The Gibbs free energy G is
convenient when both pressure and temperature are fixed, as is commonly
the case in chemical reactions performed in a vessel that is open to the air.

One other important result follows from the information in (29): each
of the derivative quantities, T , P , and µ, as well as the variables S, V , and
N , can be expressed in terms of derivatives of some of the potentials. The
correspondence between the terms in the thermodynamic identity satisfied
by any one of the potentials and the total differential of that potential when
viewed as a function of its natural variables gives the definitions of the three
derivative quantities of that potential. The meanings of the derivatives of
the energy are familiar, but we can also easily extract from (29) things like

T =
(

∂H

∂S

)
P,N

and V =
(

∂G

∂P

)
T,N

. (30)
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These can be very handy bits of information to have available when one is
manipulating thermodynamic expressions.

One can, of course, construct several additional thermodynamic poten-
tials through other combinations of Legendre transformations of the energy.
In addition, each of the potentials can be expressed in terms of Legendre
transformations of other potentials. For example,

G = F + PV = H − TS and F = G− PV = H − TS − PV . (31)

You can see that there are many possibilities.
There is also an analogous family of Legendre transformations of the

entropy, those functions often being called Massieu functions.
One important thing to keep in mind is that you need not memorize

this entire blizzard of formulas. Nor need you spend time looking through
several books for just the right one when you need one. If you only remem-
ber the thermodynamic identity for the energy, dU = T dS−P dV + µdN ,
and either the natural variables upon which each potential depends or the
definition of each potential in terms of a Legendre transformation of the
energy, together with the list of variables upon which U depends, it is ex-
tremely easy to construct all the other formulas in a matter of seconds.
Even the definitions of the derivative quantities T , P , and µ in terms of U
need not be memorized.

HW Problem. Schroeder problem 5.12, pp. 158–159.

HW Problem. Schroeder problem 5.14, p. 159.

HW Problem. Schroeder problem 5.17, p. 160.

Reading assignment. Schroeder, section 5.3.

0.1.3 Variational principles

The second law of thermodynamics asserts that whenever any constrained
internal parameter of an isolated system is permitted to vary, the ultimate
equilibrium state of the system will be the one that maximizes the entropy
over all possible values of that parameter. This is an example of a varia-
tional principle, and it states the condition for equilibrium in terms of the
entropy.

For systems in contact with reservoirs, which are large systems with
fixed values of parameters like temperature or pressure, it is often more
convenient to express the relations among the thermodynamic variables in
the form of a thermodynamic potential function. In such circumstances it
is also convenient to express the condition for equilibrium in terms of the
thermodynamic potential, rather than the total entropy of the system plus
reservoir. The advantage gained in casting the problem in terms of the
appropriate thermodynamic potential is that the variables that enter are
then the ones characterizing the system of interest, allowing the attached

7



reservoir, or the environment generally, to be treated as a fixed external
influence, rather than having to be treated as part of the system we analyze.

Our goal then is to find the appropriate variational principles that can
be used to find the equilibrium state in such cases. But first, we’ll review
the variational principle satisfied by the entropy and then take a look at
an alternative characterization of the condition for equilibrium in terms of
the energy, rather than the entropy.

Variational principle for the entropy

We’ll begin by supposing that the system is in some way internally con-
strained away from its equilibrium state—a convenient way to picture this is
to suppose it consists of two subsystems initially prevented from exchanging
something, possibly energy, volume, or particles. Denoting the constrained
parameter generically by λ, we’ll write the entropy of the combined system
as

S = S(U, λ) , (32)

where the explicit dependence of S on V and N has been suppressed, since
they won’t play a significant role in the analysis, and we’ll take them to be
fixed. You might find it helpful to think of λ as the energy of the first sub-
system, with the energy of the second subsystem being U −λ, and to think
of the type of contact to be established between the subsystems as ther-
mal contact, in which λ is allowed to vary to establish thermal equilibrium
between the subsystems.

When the systems are placed into the appropriate type of contact, so
that λ can change, the equilibrium value of λ will be the one that maximizes
the function S(U, λ) over all possible values of λ, with U held fixed. That
is, the equilibrium value of λ is the one that satisfies the conditions(

∂S

∂λ

)
U

= 0 and
(

∂2S

∂λ2

)
U

< 0. (33)

Keep in mind that S and U are properties of the combined system, while λ
is generally related to some property of one of the subsystems, such as its
energy.

Variational principle for the energy

Recall that the function S = S(U, V,N) is a relation among four variables
that contains all the thermodynamic information about the system. It can
be solved for the alternative function U = U(S, V,N), which contains all
the same information. It should not be surprising then that the equilib-
rium condition can equally well be stated in an alternative form using this
function, instead of the entropy.

Imagine that instead of fixing the total energy U and asking what value
of λ maximizes S, we fix S and look for the appropriate variational principle

8



satisfied by U , now allowed to vary. While it is easy to envision isolating the
combined system in order to fix its total energy, fixing its entropy may be
physically trickier. Entry of any heat must be prevented, since that would
raise the entropy, and any work that is done must be done quasistatically.
Nevertheless, we can easily handle that mathematically.

Since S is fixed, its total differential, given small changes in U and λ,
must vanish:

dS =
(

∂S

∂U

)
λ

dU +
(

∂S

∂λ

)
U

dλ = 0 . (34)

This implies that the derivative of the energy with respect to λ can be
expressed in terms of derivatives of S:(

∂U

∂λ

)
S

= − (∂S/∂λ)U

(∂S/∂U)λ
. (35)

At equilibrium, the partial derivative of S with respect to U gives the
inverse of the temperature:(

∂S

∂U

)
λ

=
(

∂S

∂U

)
λ,V,N

=
1
T

. (36)

Thus, the derivatives of U and S with respect to λ are proportional:(
∂U

∂λ

)
S

= −T

(
∂S

∂λ

)
U

= 0 , (37)

where the last equality follows from the equilibrium condition stated in
terms of entropy.

So we have found that the energy of the combined system with specified
entropy is, like the entropy with specified energy, extremal in the equilib-
rium state. But what kind of extremum is it? To find out, we’ll need to
look at the second derivative. To simplify the notation, let’s define

f(U, λ) =
(

∂U

∂λ

)
S

. (38)

9



Then the second derivative of the energy is(
∂2U

∂λ2

)
S

=
(

∂f

∂λ

)
S

=
(

∂f

∂U

)
λ

(
∂U

∂λ

)
S︸ ︷︷ ︸

0 in equilibrium

+
(

∂f

∂λ

)
U

=
∂

∂λ

[
− (∂S/∂λ)U

(∂S/∂U)λ

]
U

= − (∂2S/∂λ2)U

(∂S/∂U)λ
+

0 in equilibrium︷ ︸︸ ︷
(∂S/∂λ)U (∂2S/∂λ∂U)

(∂S/∂U)2λ

= −T

(
∂2S

∂λ2

)
U︸ ︷︷ ︸

< 0 in equilibrium

> 0 .

(39)

Thus, in the equilibrium state U is minimized over all values of λ at fixed
S. This is the variational principle satisfied by U for a system with S fixed,
and it is completely equivalent to the variational principle satisfied by S for
fixed U , in the sense that both determine the same equilibrium state. That
is, if we find the equilibrium value of S by maximizing S subject to fixed U ,
then the minimization of U when S is fixed at the equilibrium value found
by the entropic variational principle, the value of U found matches the fixed
value used to maximize the entropy. And, the values of the parameter λ
are the same in both cases.

Variational principle for the free energy

To find the appropriate variational principle satisfied by the Helmholtz free
energy, F = U − TS, we consider a system in thermal contact with a
reservoir whose temperature determines the equilibrium temperature. An
appropriate parameter that characterizes the macrostate of the combined
system plus reservoir is the energy of the system, U . The total differential
of the total entropy of the system plus reservoir is

dStot = dS + dSR , (40)

where S is the entropy of the system, and SR is that of the reservoir. The
thermodynamic identity for the entropy of the reservoir is

dSR =
1

TR
dUR +

PR

TR
dVR − µR

TR
dNR , (41)
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but the reservoir can only exchange energy with the system, so the last two
terms vanish. Since any energy change of the reservoir is the negative of
the energy change of the system, and the temperature T of the system at
equilibrium is the same as the temperature TR of the reservoir, the total
differential of Stot can be written entirely in terms of variables the system:

dStot = dS +
1

TR
dUR

= dS − 1
T

dU

= − 1
T

(dU − T dS)

= − 1
T

dF .

(42)

In the last step, we’ve made use of the fact that dF = dU − T dS −S dT =
dU − T dS, since the reservoir fixes the temperature, so that S dT = 0.

This proportionality between the total differential of the total entropy
of the combined system plus reservoir and the total differential of the free
energy of the system alone tells us two things. The first is that Stot is
extremal if and only if F is extremal. That is, either both of their total
differentials vanish, or both do not. The second is that the differentials
have opposite sign—if Stot decreases a little, then F increases a little, and
vice versa. In fact, Stot can only decrease from its equilibrium value, so
the free energy of the system can only increase from its equilibrium value.
Thus, the free energy of the system is minimized in equilibrium.
[EOC, Mon. 3/6/2006, #24; HW07 closed, due Mon. 3/13/2006]

Similar arguments can be developed to show that the other thermody-
namic potentials also satisfy minimum principles as conditions for equilib-
rium.

HW Problem. Schroeder problem 5.20, p. 163.

0.1.4 Extensive vs intensive variables

The basic variables, S, U , V , and N are all proportional to system size
in the thermodynamic limit. They are said to be extensive variables. For
example, recall that the entropy of the combination of two systems is the
sum of the entropies of the subsystems:

Stot(Utot, Vtot, Ntot = S1(U1, V1, N1) + S2(U2, V2, N2) . (43)

So, if the subsystems are identical,

Stot(2U, 2V, 2N) = 2S(U, V,N) . (44)

A more precise, as well as more general way to state this is to note that if
the variables on which S depends are all multiplied by a factor λ, then

S(λU, λV, λN) = λS(U, V,N) . (45)

11



For example, in the Sackur-Tetrode entropy of a monatomic ideal gas:

S(U, V,N) = Nk

{
ln

[
V

N

(
4πmU

3h2N

)3/2
]

+
5
2

}
. (46)

If U → λU , V → λV , and N → λN , then the ratios V/N and U/N
are unchanged, and the N out front becomes λN , so that S → λS. In
fact, that’s why I always write it in terms of V/N and U/N—it makes the
extensivity obvious.

In general, a function that satisfies

f(λx1, λx2, . . . ) = λnf(x1, x2, . . . ) (47)

is said to be a homogeneous function of degree n. Extensive variables are
homogeneous functions of degree 1.

Derivatives of extensive quantities with respect to extensive quantities,
like

T =
(

∂U

∂S

)
V,N

, P = −
(

∂U

∂V

)
S,N

, and µ =
(

∂U

∂N

)
S,V

(48)

are independent of system size in the thermodynamic limit. They are called
intensive variables and are homogeneous functions of degree zero. In gen-
eral, ratios of extensive quantities are intensive, like V/N and U/N in the
Sackur-Tetrode equation.

Note that any purported entropy function S(U, V,N) that violates ex-
tensivity is bogus. This provides a quick and easy check on the validity of
any such function.

0.1.5 Chemical potential revisited

From our handy table of thermodynamic identities for the common ther-
modynamic potentials, we find weveral expressions for µ:

µ =
(

∂U

∂N

)
S,V

=
(

∂H

∂N

)
S,P

=
(

∂F

∂N

)
T,V

=
(

∂G

∂N

)
T,P

. (49)

That is, µ is the change in energy when a particle is added at constant S
and V , etc. Of all these expressions, the one involving the Gibbs free energy
G is special, in that the variables being held fixed are both intensive. This
means that

G = G(T, P,N) (50)

has an especially simple expression in terms of N . If N is increased by a
factor λ, increasing the system’s size, with T and P remaining fixed, the
only thing that causes G to change is the explicit change in N . So the
derivative (

∂G

∂N

)
T,P

= µ (51)

12



remains unchanged as particles are added. Thus, G is actually proportional
to µ:

G = Nµ . (52)

Thus, the chemical potential can be characterized as the Gibbs free energy
per particle, if the system contains only one type of particle.

We can state this argument more rigorously by making explicit use of
extensivity. That the Gibbs free energy is an extensive function can be seen
from its definition

G = U − TS + PV , (53)

in which every term contains either an extensive variable or the product
of an intensive variable multiplied by an extensive variable. Every term is
extensive, so their sum must be.

If we scale the system size by λ, the effect on G and its arguments is

G(T, P, λN) = λG(T, P,N) . (54)

Now differentiate both sides of this with respect to the scale factor λ:

dG(T, P, λN)
dλ

=
[
∂G(T, P, λN)

∂(λN)

]
T,P

d(λN)
dλ︸ ︷︷ ︸
N

= G(T, P,N) . (55)

Now let λ → 1 and make use of the definition of the chemical potential as
µ = (∂G/∂N)T,P to get

G(T, P,N) = µN . (56)

In contrast,

µ =
(

∂F

∂N

)
T,V

(57)

does change as particles are added, because increasing N while the temper-
ature and volume are held fixed requires changing the pressure and density.
We know the chemical potential depends on the concentration of particles,
so it must change as the density changes.

Recall from previous notes that for the ideal gas

U = TS − PV + µN . (58)

I claimed it was true generally, but offered no proof. In fact, the proof is
properly done by the same technique we used above to show that G = µN .
That technique, or the expression for U above together with the definitions
of the potentials, can also be used to obtain the corresponding expressions
for the enthalpy and free energy:

H = TS + µN and F = −PV + µN . (59)

HW Problem. Schroeder problem 5.23, p. 166.
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0.1.6 Phase transformations of pure substances

Generally, substances can exist in any of several phases, distinguished from
each other macroscopically by their physical properties and microscopically
by the structural arrangement of their particles. Some common phases of
matter and their typical characteristics are:

• Gas: low density, high compressibility, little interaction between par-
ticles, no significant order, hence high entropy.

• Liquid: high density; low compressibility; strong interaction between
particles; possibly some short-range order, such as temporary cluster-
ing; no long-range order. There may be multiple liquid phases, such
as in liquid helium.

• Solid: high density; low compressibility; strong interaction between
particles; long-range order is common, as in crystalline solids. There
may be multiple solid phases.

In each phase, there is a function S(U, V,N) or U(S, V,N) that char-
acterizes that phase, but the form of that function, which determines the
macroscopic properties, is generally quite different in each phase.

As an example, let’s take a look at some possible phases of solid sili-
con. The following figure, from Yin and Cohen, Phys. Rev. Lett. 45, 1004
(1980), shows the results of calculations of the energy U(0, V, N)/N at zero
temperature for several different hypothetical crystal structures that one
could suppose silicon might adopt, depending on conditions. Actually, the
volume axis shows V/N normalized to the measured volume under standard
conditions.
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There are a number of insights we can glean from analysis of this figure
and of the general notion of two competing solid phases, each of which is
more stable than the other under some conditions.

First, it’s clear that some of these crystal structures are simply too
energetic to be competitive at any of the volumes shown on the graph.
The fcc and bcc structures fall into that category, and the hcp structure
does as well, though it seems to become competitive at sufficiently low vol-
umes. The hexagonal diamond structure lies close in energy to the diamond
structure, so it would not be surprising to see some of it present at finite
temperature, but the diamond structure clearly has the lowest energy glob-
ally. The graphite structure is actually a bit lower in energy, but it is not
shown. The β-tin structure lies higher in energy globally than the diamond
structure, but it becomes more stable than the diamond structure under
sufficiently high pressure:

V

Diamond

U

Diamond stable

β-tin

V1

β-tin stable

The transformation from the diamond structure to the β-tin structure
doesn’t take place suddenly at the volume V1, however. The energies of
both structures lie above the energy of a mixture of the two structures:

Common tangent

U

V

β-tin

Vβ VdV1 ViVf

Diamond
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It is energetically favorable for the system to phase separate into regions
having the diamond structure and regions having the β-tin structure. Within
each of these, the volume is that appropriate to the local structure, either
Vi or Vf , and the average volume is an intermediate value, possibly V1,
depending on how much work is done after the onset of the phase trans-
formation. The common tangent to the two energy curves gives the energy
of a mixture of the two phases as a function of the average volume, and
that energy is lower than that of either a uniform diamond structure or a
uniform β-tin structure between the points of tangency at Vi and Vf .

Thus, the thermodynamically relevant global function U(V ), encom-
passing the volumes at which each phase is individually stable and the
region where a mixture is stable, includes the parts of the energy curves of
the uniform phases outside the region where Vf < V < Vi, together with
the common tangent within that volume range. The portions of the energy
curves of the uniform phases lying within the range of the phase separa-
tion are thermodynamically inaccessible, in the sense that they represent
nonequilibrium structures of the system:

U

V

β-tin

ViVf

Not this

This

Diamond

Recall now that the pressure can be expressed as

P = −
(

∂U

∂C

)
S,N

, (60)

which is just the slope of the U(V ) curve. This means we can view the
compression-driven phase transition of silicon from the diamond structure
to the β-tin structure as beginning when the volume reaches Vi or the
pressure reaches

P = −
(

∂U

∂V

)
S,N

∣∣∣∣∣
Vi

. (61)

The pressure remains at that value while the system moves along the com-
mon tangent line, with decreasing volume and increasing amounts of the
β-tin structure.
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