298  Traffic Flow

{a) What velocity-density curves are implied by the above general model,
under the steady-state hypothesis ?

(b) Consider the case proposed by Edie, m = 1, I = 2. Show that the
assumption that u(pn,;) = 0 does not yield a reasonable velocity-
density curve. Instead, assume u(0) = up,,, and briefly discuss the
resulting model.

64.4. Show that the two car-following models described in this section satisfy
dgldp < 0.

64.5. Compare the two theoretical models of this section to the Lincoln Tunnel
data (see Sec. 62). Which theory best fits the data? [Hint: The parameters of
the model are usually chosen by making a least-squares fit to the data. How-
ever, if you wish for simplicity you may assume that p.,, = 225 cars/mile
and also assume that the theoretical curve exactly satisfies the first data
point, ¥ = 32 m.p.h. when p = 34 cars/mile.}

65. Partial Differential Equations

For a given segment of a highway, experiments can be run to analyze the
density dependence of the velocity. If we assume that under all circumstances
the driver’s velocity is a known function of p, determined by ¥ = u(p), then
conservation of cars (equation 60.8) implies

ww + %m@:@v = 0. (65.1)

This is a partial differential equation in one unknown variable p.

Suppose a nonconstant initial traffic density existed, as shown in Fig.
65-1. Different cars will move at different velocities (since the spacing is
nonuniform). Thus the density will change immediately, and, under our
assumptions, the drivers would adjust their velocities immediately. This
process would continue. If we were interested in the density of cars at a later
time we would “just” need to solve the partial differential equation.

The traffic problem has been formulated in terms of one partial differ-
ential equation, equation 65.1, or equivalently

wm + %ﬁ@ =0, \ (65.2)
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Figure 65-1 Nonuniform traffic.

299  Sec. 65 Partial Differential Equations

since ¢ = pu. q can be considered a function of p only. This last expression is
often easier to use since by the chain rule

d _dgdp
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and thus

dp , dgdp _
uw+ D= 0. (65.3)

One appropriate condition in order to solve uniquely the partial differ-
ential equation is an initial condition. With an nth order ordinary differential
equation, n initial conditions are needed. The number of conditions are
correspondingly the same for partial differential equations. Thus for equation
65.3 only one initial condition is needed since the partial differential equation
only involves one time derivative. However, there are some major differences
between ordinary and partial differential equations due to the additional
independent variable. ,

To illustrate this difference, let us consider three extremely simple first
order partial differential equations:

(1) %o
o) ww = —p+2¢
G) www — —xp.

These are called partial differential equations because p is assumed to
depend on x and ¢ (even though there is no explicit appearance of x in either
of the first two equations). If p only depends on ¢, then the first two would be
ordinary differential equations, the general solutions being:

1) p = constant = ¢,

2 p=cet+e. '
To have a unique solution, one initial condition is needed, for example, if
p(0) = p,, then

1) P =P

2 p=(p, — et + ¢

However, now we assume (as originally proposed) that g depends on both x
and ¢.




