7-6.

Let us choose ξ, S as our generalized coordinates. The x, y coordinates of the center of the hoop are expressed by

$$
\left.\begin{array}{l}
x=\xi+S \cos \alpha+r \sin \alpha \tag{1}\\
y=r \cos \alpha+(\ell-S) \sin \alpha
\end{array}\right]
$$

Therefore, the kinetic energy of the hoop is

$$
\begin{align*}
T_{\text {hoop }} & =\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I \dot{\phi}^{2} \\
& =\frac{1}{2} m\left[(\dot{\xi}+\dot{S} \cos \alpha)^{2}+(-\dot{S} \sin \alpha)^{2}\right]+\frac{1}{2} I \dot{\phi}^{2} \tag{2}
\end{align*}
$$

Using $I=m r^{2}$ and $S=r \phi$, (2) becomes

$$
\begin{equation*}
T_{\text {hoop }}=\frac{1}{2} m\left[2 \dot{S}^{2}+\dot{\xi}^{2}+2 \dot{\xi} \dot{S} \cos \alpha\right] \tag{3}
\end{equation*}
$$

In order to find the total kinetic energy, we need to add the kinetic energy of the translational motion of the plane along the x-axis which is

$$
\begin{equation*}
T_{\text {plane }}=\frac{1}{2} M \dot{\xi}^{2} \tag{4}
\end{equation*}
$$

Therefore, the total kinetic energy becomes

$$
\begin{equation*}
T=m \dot{S}^{2}+\frac{1}{2}(m+M) \dot{\xi}^{2}+m \dot{\xi} \dot{S} \cos \alpha \tag{5}
\end{equation*}
$$

The potential energy is

$$
\begin{equation*}
U=m g y=m g[r \cos \alpha+(\ell-S) \sin \alpha] \tag{6}
\end{equation*}
$$

Hence, the Lagrangian is

$$
\begin{equation*}
l=m \dot{S}^{2}+\frac{1}{2}(m+M) \dot{\xi}^{2}+m \dot{\xi} \dot{S} \cos \alpha-m g[r \cos \alpha+(\ell-S) \sin \alpha] \tag{7}
\end{equation*}
$$

from which the Lagrange equations for ξ and S are easily found to be

$$
\begin{gather*}
2 m \ddot{S}+m \ddot{\xi} \cos \alpha-m g \sin \alpha=0 \tag{8}\\
(m+M) \ddot{\xi}+m \ddot{S} \cos \alpha=0 \tag{9}
\end{gather*}
$$

or, if we rewrite these equations in the form of uncoupled equations by substituting for $\ddot{\xi}$ and \ddot{S}, we have

$$
\left[\begin{array}{c}
{\left[2-\frac{m \cos ^{2} \alpha}{m+M}\right] \ddot{S}-g \sin \alpha=0} \tag{10}\\
\ddot{\xi}=-\frac{m g \sin \alpha \cos \alpha}{2(m+M)-m \cos ^{2} \alpha}
\end{array}\right]
$$

Now, we can rewrite (9) as

$$
\begin{equation*}
\frac{d}{d t}[(m+M) \dot{\xi}+m \dot{S} \cos \alpha]=0 \tag{11}
\end{equation*}
$$

where we can interpret $(m+M) \dot{\xi}$ as the x component of the linear momentum of the total system and $m \dot{S} \cos \alpha$ as the x component of the linear momentum of the hoop with respect to the plane. Therefore, (11) means that the x component of the total linear momentum is a constant of motion. This is the expected result because no external force is applied along the x-axis.

7-7.

If we take $\left(\phi_{1}, \phi_{2}\right)$ as our generalized coordinates, the x, y coordinates of the two masses are

$$
\left.\begin{array}{c}
x_{1}=\ell \cos \phi_{1} \\
y_{1}=\ell \sin \phi_{1} \tag{2}
\end{array}\right]
$$

Using (1) and (2), we find the kinetic energy of the system to be

$$
\begin{align*}
T & =\frac{m}{2}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{m}{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \\
& =\frac{m}{2} \ell^{2}\left[\dot{\phi}_{1}^{2}+\dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2}\left(\sin \phi_{1} \sin \phi_{2}+\cos \phi_{1} \cos \phi_{2}\right)\right] \\
& =\frac{m}{2} \ell^{2}\left[2 \dot{\phi}_{1}^{2}+\dot{\phi}_{2}^{2}+2 \dot{\phi}_{1} \dot{\phi}_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right] \tag{3}
\end{align*}
$$

The potential energy is

$$
\begin{equation*}
U=-m g x_{1}-m g x_{2}=-m g \ell\left[2 \cos \phi_{1}+\cos \phi_{2}\right] \tag{4}
\end{equation*}
$$

Therefore, the Lagrangian is

$$
\begin{equation*}
L=m \ell^{2}\left[\dot{\phi}_{1}^{2}+\frac{1}{2} \dot{\phi}_{2}^{2}+\dot{\phi}_{1} \dot{\phi}_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right]+m g \ell\left[2 \cos \phi_{1}+\cos \phi_{2}\right] \tag{5}
\end{equation*}
$$

from which

$$
\left.\begin{array}{l}
\frac{\partial L}{\partial \phi_{1}}=m \ell^{2} \dot{\phi}_{1} \dot{\phi}_{2} \sin \left(\phi_{1}-\phi_{2}\right)-2 m g \ell \sin \phi_{1} \\
\frac{\partial L}{\partial \dot{\phi}_{1}}=2 m \ell^{2} \dot{\phi}_{1}+m \ell^{2} \dot{\phi}_{2} \cos \left(\phi_{1}-\phi_{2}\right) \\
\frac{\partial L}{\partial \phi_{2}}=-m \ell^{2} \dot{\phi}_{1} \dot{\phi}_{2} \sin \left(\phi_{1}-\phi_{2}\right)-m g \ell \sin \phi_{2} \tag{6}\\
\frac{\partial L}{\partial \dot{\phi}_{2}}=m \ell^{2} \dot{\phi}_{2}+m \ell^{2} \dot{\phi}_{1} \cos \left(\phi_{1}-\phi_{2}\right)
\end{array}\right]
$$

The Lagrange equations for ϕ_{1} and ϕ_{2} are

$$
\begin{gather*}
2 \phi_{1}+\ddot{\phi}_{2} \cos \left(\phi_{1}-\phi_{2}\right)+\dot{\phi}_{2}^{2} \sin \left(\phi_{1}-\phi_{2}\right)+2 \frac{g}{\ell} \sin \phi_{1}=0 \tag{7}\\
\ddot{\phi}_{2}+\ddot{\phi}_{1} \cos \left(\phi_{1}-\phi_{2}\right)-\ddot{\phi}_{1}^{2} \sin \left(\phi_{1}-\phi_{2}\right)+\frac{g}{\ell} \sin \phi_{2}=0 \tag{8}
\end{gather*}
$$

7-10.

Let the length of the string be ℓ so that

$$
\begin{equation*}
(S-x)-y=\ell \tag{1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\dot{x}=-\dot{y} \tag{2}
\end{equation*}
$$

a) The Lagrangian of the system is

$$
\begin{equation*}
L=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} M \dot{y}^{2}-M g y=M \dot{y}^{2}-M g y \tag{3}
\end{equation*}
$$

Therefore, Lagrange's equation for y is

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{y}}-\frac{\partial L}{\partial y}=2 M \ddot{y}+M g=0 \tag{4}
\end{equation*}
$$

from which

$$
\begin{equation*}
\ddot{y}=-\frac{g}{2} \tag{5}
\end{equation*}
$$

Then, the general solution for y becomes

$$
\begin{equation*}
y(t)=-\frac{g}{4} t^{2}+C_{1} t+C_{2} \tag{6}
\end{equation*}
$$

If we assign the initial conditions $y(t=0)=0$ and $\dot{y}(t=0)=0$, we find

$$
\begin{equation*}
y(t)=-\frac{g}{4} t^{2} \tag{7}
\end{equation*}
$$

b) If the string has a mass m, we must consider its kinetic energy and potential energy. These are

$$
\begin{gather*}
T_{\text {string }}=\frac{1}{2} m \dot{y}^{2} \tag{8}\\
U_{\text {string }}=-\frac{m}{\ell} y g \frac{y}{2}=-\frac{m g}{2 \ell} y^{2} \tag{9}
\end{gather*}
$$

Adding (8) and (9) to (3), the total Lagrangian becomes

$$
\begin{equation*}
L=M \dot{y}^{2}-M g y+\frac{1}{2} m \dot{y}^{2}+\frac{m g}{2 \ell} y^{2} \tag{10}
\end{equation*}
$$

Therefore, Lagrange's equation for y now becomes

$$
\begin{equation*}
(2 M+m) \ddot{y}-\frac{m g}{\ell} y+M g=0 \tag{11}
\end{equation*}
$$

In order to solve (11), we arrange this equation into the form

$$
\begin{equation*}
(2 M+m) \ddot{y}=\frac{m g}{\ell}\left[y-\frac{M \ell}{m}\right] \tag{12}
\end{equation*}
$$

Since $\frac{d^{2}}{d t^{2}}\left[y-\frac{M \ell}{m}\right]=\frac{d^{2}}{d t^{2}} y,(12)$ is equivalent to

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left[y-\frac{M \ell}{m}\right]=\frac{m g}{\ell(2 M+m)}\left[y-\frac{M \ell}{m}\right] \tag{13}
\end{equation*}
$$

which is solved to give

$$
\begin{equation*}
y-\frac{M \ell}{m}=A e^{\gamma t}+B e^{-\gamma t} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\sqrt{\frac{m g}{\ell(2 M+m)}} \tag{15}
\end{equation*}
$$

If we assign the initial condition $y(t=0)=0 ; \dot{y}(t=0)=0$, we have

$$
A=+B=-\frac{M \ell}{2 m}
$$

Then,

$$
\begin{equation*}
y(t)=\frac{M \ell}{m}(1-\cosh \gamma t) \tag{16}
\end{equation*}
$$

7-14.

$$
\begin{gathered}
x=b \sin \theta \\
y=\frac{1}{2} a t^{2}-b \cos \theta \\
\dot{x}=b \theta \cos \theta \\
\dot{y}=a t+b \dot{\theta} \sin \theta \\
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m\left(b^{2} \dot{\theta}^{2}+a^{2} t^{2}+2 a b t \dot{\theta} \sin \theta\right) \\
U=m g y=m g\left[\frac{1}{2} a t^{2}-b \cos \theta\right] \\
L=T-U=\frac{1}{2} m\left(b^{2} \dot{\theta}^{2}+a^{2} t^{2}+2 a b t \dot{\theta} \sin \theta\right)+m g\left(b \cos \theta-\frac{1}{2} a t^{2}\right)
\end{gathered}
$$

Lagrange's equation for θ gives

$$
\begin{aligned}
& \frac{d}{d t}\left[m b^{2} \dot{\theta}+m a b t \sin \theta\right]=m a b t \dot{\theta} \cos \theta-m g b \sin \theta \\
& b^{2} \ddot{\theta}+a b \sin \theta+a b t \dot{\theta} \cos \theta=a b t \dot{\theta} \cos \theta-g b \sin \theta \\
& \ddot{\theta}+\frac{a+g}{b} \sin \theta=0
\end{aligned}
$$

For small oscillations, $\sin \theta \simeq \theta$

$$
\ddot{\theta}+\frac{a+g}{b} \theta=0 .
$$

Comparing with $\ddot{\theta}+\omega^{2} \theta=0$ gives

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{b}{a+g}}
$$

7-15.

$$
b=\text { unextended length of spring }
$$

$$
\ell=\text { variable length of spring }
$$

$$
T=\frac{1}{2} m\left(\dot{\ell}^{2}+\ell^{2} \dot{\theta}^{2}\right)
$$

$$
U=\frac{1}{2} k(\ell-b)^{2}+m g y=\frac{1}{2} k(\ell-b)^{2}-m g \ell \cos \theta
$$

$$
L=T-U=\frac{1}{2} m\left(\dot{\ell}^{2}+\ell^{2} \dot{\theta}^{2}\right)-\frac{1}{2}(\ell-b)^{2}+m g \ell \cos \theta
$$

Taking Lagrange's equations for ℓ and θ gives

$$
\begin{gathered}
\ell: \frac{d}{d t}[m \dot{\ell}]=m \ell \dot{\theta}^{2}-k(\ell-b)+m g \cos \theta \\
\theta: \frac{d}{d t}\left[m \ell^{2} \dot{\theta}\right]=-m g \ell \sin \theta
\end{gathered}
$$

This reduces to

$$
\begin{aligned}
& \ddot{\ell}-\ell \dot{\theta}^{2}+\frac{k}{m}(\ell-b)-g \cos \theta=0 \\
& \ddot{\theta}+\frac{2}{\ell} \dot{\ell} \dot{\theta}+\frac{g}{\ell} \sin \theta=0
\end{aligned}
$$

7-22. The potential energy U which gives the force

$$
\begin{equation*}
F(x, t)=\frac{k}{x^{2}} e^{-(t / \tau)} \tag{1}
\end{equation*}
$$

must satisfy the relation

$$
\begin{equation*}
F=-\frac{\partial U}{\partial x} \tag{2}
\end{equation*}
$$

we find

$$
\begin{equation*}
U=\frac{k}{x} e^{-t / \tau} \tag{3}
\end{equation*}
$$

Therefore, the Lagrangian is

$$
\begin{equation*}
L=T-U=\frac{1}{2} m \dot{x}^{2}-\frac{k}{x} e^{-t / \tau} \tag{4}
\end{equation*}
$$

The Hamiltonian is given by

$$
\begin{equation*}
H=p_{x} \dot{x}-L=\dot{x} \frac{\partial L}{\partial \dot{x}}-L \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{k}{x} e^{-t / \tau} \tag{6}
\end{equation*}
$$

The Hamiltonian is equal to the total energy, $T+U$, because the potential does not depend on velocity, but the total energy of the system is not conserved because H contains the time explicitly.

7-23. The Hamiltonian function can be written as [see Eq. (7.153)]

$$
\begin{equation*}
H=\sum_{j} p_{j} \dot{q}_{j}-L \tag{1}
\end{equation*}
$$

For a particle which moves freely in a conservative field with potential U, the Lagrangian in rectangular coordinates is

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U
$$

and the linear momentum components in rectangular coordinates are

$$
\begin{gather*}
p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x} \\
p_{y}=m \dot{y} \tag{2}\\
p_{z}=m \dot{z} \\
H=\left[m \dot{x}^{2}+m \dot{y}^{2}+m \dot{z}^{2}\right]-\left[\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-U\right] \\
=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+U=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) \tag{3}
\end{gather*}
$$

which is just the total energy of the particle. The canonical equations are [from Eqs. (7.160) and (7.161)]

$$
\begin{align*}
& \dot{p}_{x}=m \ddot{x}=-\frac{\partial U}{\partial x}=F_{x} \tag{4}\\
& \dot{p}_{y}=m \ddot{y}=-\frac{\partial U}{\partial y}=F_{y} \\
& \dot{p}_{z}=m \ddot{z}=-\frac{\partial U}{\partial z}=F_{z}
\end{align*}
$$

These are simply Newton's equations.

