
7-6.  

   

Let us choose ,S as our generalized coordinates. The x,y coordinates of the center of the hoop 
are expressed by 
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Therefore, the kinetic energy of the hoop is 
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Using 2I mr  and S r , (2) becomes 
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In order to find the total kinetic energy, we need to add the kinetic energy of the translational 
motion of the plane along the x-axis which is 
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Therefore, the total kinetic energy becomes 
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The potential energy is 
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Hence, the Lagrangian is 
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from which the Lagrange equations for  and S are easily found to be 
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or, if we rewrite these equations in the form of uncoupled equations by substituting for   and 

S , we have 
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Now, we can rewrite (9) as 
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where we can interpret  m M   as the x component of the linear momentum of the total 

system and cosmS   as the x component of the linear momentum of the hoop with respect to 

the plane. Therefore, (11) means that the x component of the total linear momentum is a 
constant of motion. This is the expected result because no external force is applied along the 
x-axis. 

7-7.  

   

If we take  1 2,   as our generalized coordinates, the x,y coordinates of the two masses are 
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Using (1) and (2), we find the kinetic energy of the system to be 
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The potential energy is 

  1 2 1 22 cos cosU mgx mgx mg           (4) 

Therefore, the Lagrangian is 
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from which 
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The Lagrange equations for 1  and 2  are 
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7-10.  

   

Let the length of the string be  so that 
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a) The Lagrangian of the system is 

  2 2 21 1

2 2
L Mx My Mgy My Mgy      (3) 



Therefore, Lagrange’s equation for y is 
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from which 
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Then, the general solution for y becomes 
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If we assign the initial conditions  0 0y t    and  0 0y t   , we find 
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b) If the string has a mass m, we must consider its kinetic energy and potential energy. These 
are 
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Adding (8) and (9) to (3), the total Lagrangian becomes 
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Therefore, Lagrange’s equation for y now becomes 
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In order to solve (11), we arrange this equation into the form 
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which is solved to give 
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If we assign the initial condition  0 0y t   ;  0 0y t   , we have 
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7-14. 
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Lagrange’s equation for  gives 
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Comparing with 2 0     gives 
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7-15. 

   

  b = unextended length of spring 

   = variable length of spring 
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Taking Lagrange’s equations for  and  gives 
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7-22. The potential energy U which gives the force 
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Therefore, the Lagrangian is 
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The Hamiltonian is given by 
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so that 
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The Hamiltonian is equal to the total energy, T + U, because the potential does not depend on 
velocity, but the total energy of the system is not conserved because H contains the time 
explicitly. 

7-23. The Hamiltonian function can be written as [see Eq. (7.153)] 
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For a particle which moves freely in a conservative field with potential U, the Lagrangian in 
rectangular coordinates is 
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and the linear momentum components in rectangular coordinates are 
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which is just the total energy of the particle. The canonical equations are [from Eqs. (7.160) and 
(7.161)] 
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These are simply Newton’s equations. 

 


