Exam 1 PH361 Name

1. Write an integral expression for the energy stored in a uniformly charged sphere of radius R and charge q using the energy density $\varepsilon_{0} E^{2} / 2$ (use the appropriate values for E).
2. A dipole \vec{p} is a distance r from a point charge q , and oriented so that \vec{p} makes an angle θ with the vector \vec{r} from q to \vec{p}. Write the initial step in obtaining the expression for the force on \vec{p}. I don't want to see a calculation beyond this first step.
3. Derive an expression for the change in the perpendicular component of the electric field across a boundary with charge density σ.
4. Explain how we calculate fields in matter.
