Practice Midterm Exam Problems for PH311

version 1.1

fixed a typo on the second problem on page 3
We reserve the right to add problems and fix typos. This is version 1.0. Remember, the real exam will have only 3 problems that you must do. So there are lots of extra problems for you to play with in this set.

- In this problem we consider a diagonal 2×2 matrix:

$$
\mathbf{A}=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{1}\\
0 & \lambda_{2}
\end{array}\right)
$$

In this expression λ_{1} and λ_{2} are constants.
Problem a: Show that

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \tag{2}\\
0 & \lambda_{2}^{n}
\end{array}\right)
$$

Problem b: Derive that

$$
\ln (\mathbf{I}+\mathbf{A})=\left(\begin{array}{cc}
\ln \left(1+\lambda_{1}\right) & 0 \tag{3}\\
0 & \ln \left(1+\lambda_{2}\right)
\end{array}\right)
$$

- Use the McClaurin series expansion of $\cos (x)$ to thow that

$$
\lim _{x \rightarrow \infty} \frac{1-\cos (x)}{x^{2}}=1 / 2
$$

- Figure out the column space and null space of the following two matrices:

$$
\left[\begin{array}{cc}
1 & -1 \tag{4}\\
0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Here is a box generated by two unit vectors, one in the x direction and one in the y direction.

and apply it to the two unit vectors, we get two new vectors that form a different box. (I.e., take the dot product of A with the two column vectors $(1,0)^{T}$ and $(0,1)^{T}$.) Draw the resulting boxes for the following matrices and say in words what the transformation is doing.

1.

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

2.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

3.

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

4.

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

5.

$$
\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

- Consider the following linear system.

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Show that the right-hand side is not in the column space of the matrix, and hence no ordinary solution exists.

- Use your knowledge of geometric series to derive an exact expression for the following sum:

$$
\sum_{k=m}^{n} x^{k}
$$

for all $m \leq n$ and all $x \neq 1$.

- Show that

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

- Suppose

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

Show that if $\alpha=1$ and $\beta=\gamma=0$, then the right-hand side is in the column space of the matrix. What is the solution in this case. Now suppose that $\alpha=\beta=0$ and $\gamma=1$. Show that the right-hand side is not in the column space.

- Let

$$
\begin{gathered}
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
C=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \\
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Fill in the following multiplication table. In other words the the box in the second row and second column should contain A^{2}. What you should see is that the table can be completely filled with the four matrices A, B, C, I and hence these four matrices are closed under multiplication. Since they have an identitiy, this makes them a group.

	A	B	C	I
A				
B				
C				
I				

- Let x and y be vectors and T a matrix. Show by giving a counterexample that for a given x, y, T is not uniquely specificied by

$$
y=T x
$$

. This shoes that division by vectors is not in general well-defined.

