
MATH348-Advanced Engineering Mathematics Homework: PDEs - Part III

Wave Equations: Traveling and Standing Waves, Nodal Lines, and Nonlinear Equations

Text: 12.2, 12.8 Lecture Notes : N/A Lecture Slides: N/A

Quote of Homework Six

Our vibrations were getting nasty. But why? Was there no communication in this car?

Had we deteriorated to the level of dumb beasts?

Duke : Fear and Loathing in Las Vegas (1998)

1. D’alembert Solution to the Wave Equation in R1+1

Show that by direct substitution the function u(x, t) given by,

(1) u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

∫ x+ct

x−ct

v0(y)dy,

is a solution to the one-dimensional wave equation where u0 and v0 are the ideally elastic objects initial displacement and velocity,

respectively. 1

2. Wave Equation on a closed and bounded spatial domain of R1+1

Consider the one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
,(2)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
.(3)

Equations (2)-(3) model the time-evolution of the displacement from rest, u = u(x, t), of an elastic medium in one-dimension. The object,

of length L, is assumed to have a homogeneous lateral tension T , and linear density ρ. That is, T, ρ ∈ R+. Assume, as well, the boundary

conditions2,

(4) ux(0, t) = 0, ux(L, t) = 0,

and initial conditions,

u(x, 0) = f(x),(5)

ut(x, 0) = g(x).(6)

2.1. Separation of Variables : General Solution. Assume that the solution to (2)-(3) is such that u(x, t) = F (x)G(t) and use separation

of variables to find the general solution to (2)-(3), which satisfies (4)-(6). 3 4

2.2. Qualitative Dynamics. Describe how the the general solution to (2)-(3) changes as the tension, T , is increased while all other

parameters are held constant. Also, describe how the solution changes when the linear density, ρ, is increased while all other parameters

are held constant.

1This is called the d’Alembert solution to the wave equation. To do this you may want to recall the fundamental theorem of calculus,
d

dx

∫ x

0
f(t)dt =

f(x) and properties of integrals,

∫ a

−a
f(x)dx =

∫ 0

−a
f(x)dx +

∫ a

0
f(x)dx.

2These boundary conditions imply that the object must have zero slope at each endpoint.
3It is important to notice that the solution to the spatial portion of the problem is the same as the heat problem above.
4Remember that in this case we have a nontrivial spatial solution for zero eigenvalue. From this you should find the associated temporal function

should find that G0(t) = C1 + C2t.
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2.3. Fourier Series : Solution to the IVP. Define,

(7) f(x) =


2k

L
x, 0 < x ≤ L

2
,

2k

L
(L− x), L

2
< x < L.

Let L = 1 and k = 1 and find the particular solution, which satisfies the initial displacement, f(x), given by (7) and has zero initial velocity

for all points on the object.

3. Inhomogeneous Wave Equation on a closed and bounded spatial domain of R1+1

Consider the non-homogeneous one-dimensional wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
+ F (x, t) ,(8)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
T

ρ
.(9)

with boundary conditions and initial conditions,

u(0, t) = u(L, t) = 0,(10)

u(x, 0) = ut(x, 0) = 0.(11)

Letting F (x, t) = A sin(ωt) gives the following Fourier Series Representation of the forcing function F ,

(12) F (x, t) =

∞∑
n=1

fn(t) sin
(nπx
L

)
,

where

(13) fn(t) =
2A

nπ
(1− (−1)n) sin(ωt).

3.1. Educated Fourier Series Guessing. Based on the boundary conditions we assume a Fourier sine series solution. However, the

time-dependence is unclear. So, assume that,

u(x, t) =

∞∑
n=1

sin
(nπ
L
x
)
Gn(t),(14)

where Gn(t) represents the unknown dynamics of the n-th Fourier mode. Using this assumption and (12)-(13), show by direct substitution

that (8) yields the ODE,

(15) G̈n +
(cnπ
L

)2
Gn =

2A

nπ
(1− (−1)n) sin(ωt).

3.2. Solving for the Dynamics. The solution to (15) is given by,

(16) Gn(t) = Gh
n(t) +Gp

n(t),

where Gh
n(t) = Bn cos

(cnπ
L
t
)

+B∗n sin
(cnπ
L
t
)

is the homogeneous solution and Gp
n(t) is the particular solution to (15).

3.2.1. Particular Solution - I. If ω 6= cnπ/L then what would the choice for Gp
n(t) be, assuming you were solving for Gp

n(t) using the method

of undetermined coefficients? do not solve for these coefficients

3.2.2. Particular Solution - II. If ω = cnπ/L then what would the choice for Gp
n(t) be, assuming you were solving for Gp

n(t) using the

method of undetermined coefficients? do not solve for these coefficients

3.2.3. Physical Conclusions. For the Particular Solution - II, what is lim
t→∞

u(x, t) and what does this limit imply physically?

4. Vibrations of a Rectangular Membrane: Wave Equation on a Bounded Domain of R2+1

Suppose that you are given an infinitesimally thin, ideally elastic membrane of area A = LxLy, which is allowed to move in the z−axis

direction but is permanently fixed along its perimeter. Use the solution to the corresponding PDE to describe the first four fundamental

vibrational modes and the structure of their nodal lines.
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5. Aspects of Nonlinearity

We have studied both ideal/linear waves and diffusive flows. Waves tend to oscillate and/or transport initial data while diffusive flows

tend to smooth and spread this data out. In this way they are archetypes of more complicated flows and vibrations found in nature.

However, these more complicated flows are often modeled by nonlinear differential equations whose mathematical construct is complicated

in incomplete.5 In the following we discuss some nonlinear PDE and their relation to physical phenomenon.

5.1. Nonlinear Heat/Diffusion Equations. Recall that the heat/diffusion equation was derived from ut + div(φ) = 0 where φ =

−Dgrad(u). This physical parameter D was called the diffusivity and we assumed it to be constant throughout the medium. Generally,

however, it makes sense to assume that D = D(u, x, y, z, t), which lets the diffusivity depend on space-time and, most importantly, the

unknown function, u. When this is the case the problem is said to be nonlinear and has found application in population modeling, fluid

filtration and image processing. Consider http://en.wikipedia.org/wiki/Anisotropic_diffusion and the PeronaMalik diffusion videos

on http://www.youtube.com/user/arclnx?blend=4&ob=5#p/u/3/KIA4feoyxFY. What is the choice of diffusivity coefficient and applications

of nonlinear diffusion.

5.2. Nonlinear Ocean Waves. The study of rouge waves, http://en.wikipedia.org/wiki/Rogue_wave, which are fairly isolated and

extremely large waves on the ocean surface, is still a matter of active research. Since they are difficulty to reproduce experimentally, much

of the work is on mathematical modeling of such waves. Consider http://en.wikipedia.org/wiki/Rogue_wave#Causes and list the three

nonlinear equations that are mentioned and when these equations are applicable to ocean wave modeling.

5.3. Nonlinear Wave Equations. For small kinetic energies waves, like electromagnetic or gravitational, travel according to the linear

wave equation. As kinetic energies become larger, Einstein’s equation becomes nonlinear and nonlinear waves are predicted. While this is

a common entry point of nonlinear wave equations, there are nonlinear wave equations modeling phenomenon on terra firma. For example,

consider http://en.wikipedia.org/wiki/Wave_equation, http://en.wikipedia.org/wiki/Mach_number and http://en.wikipedia.org/

wiki/Shock_wave, what is a shock wave, how does this relate to mach number and how does one change the linear wave equation to model

such phenomenon?

5 On reason nonlinear PDE are so difficult is that superposition, which was what gave rise to our Fourier series, does not generally hold. Actually,

one can show that for many nonlinear problems the energies associated with Fourier modes is permitted to transfer between high and low frequency

states. This can lead to pretty difficulties where problems starting off as ‘energetically reasonable’ do not stay so for all time. Yikes!

http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://www.youtube.com/user/arclnx?blend=4&ob=5#p/u/3/KIA4feoyxFY
http://en.wikipedia.org/wiki/Rogue_wave
http://en.wikipedia.org/wiki/Rogue_wave#Causes
http://en.wikipedia.org/wiki/Wave_equation
http://en.wikipedia.org/wiki/Mach_number
http://en.wikipedia.org/wiki/Shock_wave
http://en.wikipedia.org/wiki/Shock_wave

	1. D'alembert Solution to the Wave Equation in R1+1
	2. Wave Equation on a closed and bounded spatial domain of R1+1
	2.1. Separation of Variables : General Solution
	2.2. Qualitative Dynamics
	2.3. Fourier Series : Solution to the IVP

	3. Inhomogeneous Wave Equation on a closed and bounded spatial domain of R1+1
	3.1. Educated Fourier Series Guessing
	3.2. Solving for the Dynamics

	4. Vibrations of a Rectangular Membrane: Wave Equation on a Bounded Domain of R2+1
	5. Aspects of Nonlinearity
	5.1. Nonlinear Heat/Diffusion Equations
	5.2. Nonlinear Ocean Waves
	5.3. Nonlinear Wave Equations


