distance s are measured from the x axis. The distance s is related to the polar coordinates r and θ by

$$\theta = \frac{s}{r} \qquad s = r\theta \tag{3-39}$$

Since r is constant, the speed of the particle is

$$v = \frac{ds}{dt} = r \frac{d\theta}{dt}$$
 3-40

We define $\hat{\mathbf{r}}$ to be a unit vector parallel to the position vector \mathbf{r} and $\hat{\boldsymbol{\theta}}$ to be a unit vector perpendicular to \mathbf{r} , tangent to the circle in the direction of increasing θ and s.

The position, velocity, and acceleration vectors for a particle moving in a circle of radius r are

$$\mathbf{r} = r\hat{\mathbf{r}}$$

$$\mathbf{v} = v\hat{\boldsymbol{\theta}} = \frac{ds}{dt}\hat{\boldsymbol{\theta}} = \frac{r\ d\theta}{dt}\hat{\boldsymbol{\theta}}$$

$$3-41$$

$$3-42$$

$$\mathbf{a} = -\frac{v^2}{r}\,\hat{\mathbf{r}} + \frac{dv}{dt}\,\hat{\boldsymbol{\theta}} = -\frac{(ds/dt)^2}{r}\,\hat{\mathbf{r}} + \frac{d^2s}{dt^2}\,\hat{\boldsymbol{\theta}}$$
 3-43

We can relate the unit vectors $\hat{\bf r}$ and $\hat{\bf \theta}$ to the rectangular unit vectors $\bf i$ and $\bf j$. From Figure 3-28 we have

$$\mathbf{r} = r\cos\theta \,\mathbf{i} + r\sin\theta \,\mathbf{j}$$
 3-44

Therefore

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{r}} = \cos\theta \,\mathbf{i} + \sin\theta \,\mathbf{j}$$
 3-45

Similarly from Figure 3-28 we see that $\hat{\boldsymbol{\theta}}$ has rectangular components $\hat{\boldsymbol{\theta}}_x = -\sin\theta$ and $\hat{\boldsymbol{\theta}}_y = \cos\theta$; thus

$$\hat{\boldsymbol{\theta}} = -\sin\theta \, \mathbf{i} + \cos\theta \, \mathbf{j} \tag{3-46}$$

The unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$ differ from \mathbf{i} and \mathbf{j} in that their direction depends on r and θ , that is, on the location of the particle. Thus the unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$ change with time as the particle moves in a circle, while the unit vectors \mathbf{i} and \mathbf{j} are true constant vectors.

Figure 3-27
Definition of the unit vectors $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}$.

Unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$

Figure 3-28
The unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$ are related to \mathbf{i} and \mathbf{j} by $\hat{\mathbf{r}} = \cos \theta \, \mathbf{i} + \sin \theta \, \mathbf{j}$ and $\hat{\boldsymbol{\theta}} = -\sin \theta \, \mathbf{i} + \cos \theta \, \mathbf{j}$.