
are given by,

ai =
2

R2J2
n+1(kn,iR)

Z R

0

xJn(kn,iR)f(x)dx, i = 1, 2, 3, . . .(26)

We will explicitly find these solutions in class but the practical matter is how to use them. If someone provides the functions and orthogonality

condition then we can cavalierly expand in this basis. 2 Before we do this we should notice,

• The relation (24) implies that the orthogonality is on the argument not the specific Bessel function in question. That is, we have

infinitely many Bessel functions forming a class indexed by the integer n and the functions in the class are mutually orthogonal.

This is seen by the the fact that the Kronecker delta function has index (m, i) and not (m, n).

We now proceed, as usual, by considering an appropriately chosen inner-product on (25).3 Doing so gives,

�Jn(km,ix), f(x)� =

*
Ji(km,ix),

∞X

m=1

amJn(kn,mx)

+
(27)

=

∞X

m=1

am �Jn(km,ix), Jn(kn,mx)�(28)

=

∞X

m=1

am
δmi

2
[RJn+1(knmR)]2(29)

= ai
δii

2
[RJn+1(kniR)]2 ,(30)

which implies that,

ai =
2

[RJn+1(kniR)]2
�Jn(km,ix), f(x)�(31)

=
2

[RJn+1(kn,iR)]2

Z R

0

xf(x)Jn(km,ix)dx.(32)

2. Power-Series Solutions to ODE’s and Hyperbolic Trigonometric Functions

Consider the ordinary differential equation:

y�� − y = 0(33)

2.1. General Solution - Standard Form. Show that the solution to (33) is given by y(x) = c1e
x + c2e

−x.

You could derive this solution from (33) but the beauty of a differential equation is that you can always check.

y�� − y = c1e
x + (−1)2c2e

−x − c1e
x − c2e

−x = 0.(34)

2.2. General Solution - Nonstandard Form. Show that y(x) = b1 sinh(x) + b2 cosh(x) is a solution to (33) where sinh(x) =
ex − e−x

2

and cosh(x) =
ex + e−x

2
.

First we notice the derivative relations on the hyperbolic trigonometric functions,

y(x) = b1 sinh(x) + b2 cosh(x),

y�(x) = b1 cosh(x) + b2 sinh(x),

y��(x) = b1 sinh(x) + b2 cosh(x),

which then gives,

y�� − y = b1 sinh(x) + b2 cosh(x) − (b1 sinh(x) + b2 cosh(x)) = 0,(35)

and shows that this is also a solution to (33).

2You should remember that you could owe some mathematician money at this point but hey a trade is a trade.
3See HW2.5.4 for a reminder.



2.3. Conversion from Standard to Nonstandard Form. Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2

2
then y(x) = c1e

x + c2e
−x =

b1 cosh(x) + b2 sinh(x).

Direct substitution gives,

y(x) = c1e
x + c2e

−x,

=

„
b1 + b2

2

«
ex +

„
b1 − b2

2

«
e−x,

=
b1(ex + e−x)

2
+

b2(ex − e−x)

2
,

= b1 cosh(x) + b2 sinh(x),

which shows the two solutions are equivalent.

2.4. Relation to Power-Series. Assume that y(x) =

∞X

n=0

anxn to find the general solution of (33) in terms of the hyperbolic sine and

cosine functions. 4

Assume that y(x) =
∞X

n−0

anxn and find the general solution of (33). First, we have the following derivative relations.

y(x) =

∞X

n=0

anxn(37)

y�(x) =

∞X

n=0

an(n)xn−1(38)

y��(x) =

∞X

n=0

an(n)(n − 1)xn−2.(39)

Thus the ODE is now,

y�� − y =

∞X

n=0

an(n)(n − 1)xn−2 −
∞X

n=0

anxn(40)

=
∞X

k=0

ak+2(k + 2)(k + 1)xk −
∞X

k=0

akxk(41)

=

∞X

k=0

[ak+2(k + 2)(k + 1) − ak]xk = 0.(42)

The only polynomial, which is zero regardless of its variable is the zero-function. This defines the recurrence relation,

[ak+2(k + 2)(k + 1) − ak] = 0, for k = 1, 2, 3, . . . .(43)

We now write down ak+2 in terms of ak,

ak+2 =
ak

(k + 2)(k + 1)
, for k = 1, 2, 3, . . . ,(44)

and try to find a pattern by choosing various k. Since the recurrence relation relates a coefficient to the coefficient two away it splits the

coefficients into even and odd patterns.

4The hyperbolic sine and cosine have the following Taylor’s series representations centred about x = 0,

cosh(x) =
∞X

n=0

x2n

(2n)!
sinh(x) =

∞X

n=0

x2n+1

(2n+ 1)!
.(36)

It is worth noting that these are basically the same Taylor series as cosine/sine with the exception that the signs of the terms do not alternate. From

this we can gather a final connection for wrapping all of these functions together. If you have the Taylor series for the exponential function and extract

the even terms from it then you have the hyperbolic cosine function. Taking the hyperbolic cosine function and alternating the sign of its terms gives

you the cosine function. Extracting the odd terms from the exponential function gives the same statements for the hyperbolic sine and sine functions.

The reason these functions are connected via the imaginary number system is because when i is raised to integer powers it will produce these exact sign

alternations. So, if you remember ex =
P∞

n=0 xn/n! and i =
√−1 then the rest (hyperbolic and non-hyperbolic trigonometric functions) follows!



Even Coefficients Odd Coefficients

a2 =
a0

2 · 1
a3 =

a1

3 · 2 · 1

a4 =
a4

4 · 3
=

a0

4 · 3 · 2 · 1
a5 =

a3

5 · 4
=

a1

5 · 4 · 3 · 2 · 1

...
...

a2k =
a0

(2k)!
a2k+1 =

a1

(2k + 1)!

The last entries are the generalization of the pattern where the following are noticed:5

(1) The even coefficients all re-curse back to a0 and the odd coefficients recurse back to a1. Nothing more can be said about these two

coefficients.

(2) As the recursion is applied a product forms in the denominator. This product is precisely the factorial of the coefficient’s subscript.

Using this information we now have the following,

y(t) =
∞X

n=0

anxn(45)

=

∞X

n=0

a2nx2n +

∞X

n=0

a2n+1x
2n+1(46)

= a0

∞X

n=0

x2n

(2n)!
+ a1

∞X

n=0

x2n+1

(2n + 1)!
(47)

= a0 cosh(x) + a1 sinh(x),(48)

3. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

∂u

∂t
= −κ∇φ,(49)

which reduces to

∂u

∂t
= −κ

∂φ

∂x
, κ ∈ R(50)

in one-dimension of space.6 In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t)

represents its flux. If we assume the φ is proportional to the negative gradient of u then, from (50), we get the one-dimensional heat/diffusion

equation.7

3.1. Transport Equation. Assume that φ is proportional to u to derive, from (50), the convection/transport equation, ut +cux = 0 c ∈ R.

5A generalized pattern is not always possible to find. However, it should be noted that once the recursion relation is found the job is done. Every

coefficient can be known in terms of ones that precede connecting coefficients to a0 and/or a1. These originators are actually the same as the unknown

constants c1 and c2 found in the homogeneous solution and can be found via initial conditions. Thus, initial conditions will allow the evaluation of the

infinite series to arbitrary decimal precision, which is good enough for tunnel work, as they say.
6When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electricity u could be charge density and q would be its flux.
7AKA Fick’s Second Law associated with linear non-steady-state diffusion.


