Vector Spaces - Subspaces - Bases and Coordiantes - Classical Matrix Spaces - Abstract Vector Spaces

1. (a) Verify that the set of all n-times continuously differentiable functions on $[a, b]$, which satisfies the homogeneous linear ordinary differential equation $L[y]=0$,

$$
V=\left\{y \in C^{(n)}[a, b]: L[y]=a_{n}(t) \frac{d^{n} y}{d t^{n}}+a_{n-1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{0}(t) y=0, \text { where } a_{0}, \ldots, a_{n} \in C[a, b]\right\}
$$

is a vector space under addition of functions and scalar multiplication.
(b) Prove that if H is the set of all polynomials up to degree n, such that $p(0)=0$, then H is a subspace of \mathbb{P}_{n}.
(c) Prove that if $H=\{f \in C[a, b]: f(a)=f(b)\}$, then H is a subspace of $C[a, b]$.
2. The standard basis for \mathbb{R}^{2} are the column vectors, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of $\mathbf{I}_{2 \times 2}$. In class we looked at the basis $\mathfrak{B}=\left\{[1,1]^{\mathrm{T}},[-1,1]^{\mathrm{T}}\right\}$. This basis is rotated $\frac{\pi}{4}$ radians counter-clockwise from the standard basis and does not preserve the notion of length from the standard coordinate system.
(a) Determine a basis for \mathbb{R}^{2}, which is rotated $\frac{\pi}{4}$ radians counter-clockwise from the standard basis and preserves the unit length associated with the standard basis.
(b) Show that, for this basis, the change-of-coordinates matrix $\mathbf{P}_{\mathfrak{B}}$ is such that, $\mathbf{P}_{\mathfrak{B}} \mathbf{P}_{\mathfrak{B}}^{\mathrm{T}}=\mathbf{P}_{\mathfrak{B}}^{\mathrm{T}} \mathbf{P}_{\mathfrak{B}}=\mathbf{I}_{2 \times 2}$.
(c) Given that $\left[\mathbf{x}_{1}\right]_{\mathfrak{B}}=[\sqrt{2}, \sqrt{2}]^{\mathrm{T}}$ determine \mathbf{x}_{1} and given that $\mathbf{x}_{2}=\left[\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right]^{\mathrm{T}}$ determine $\left[\mathbf{x}_{2}\right]_{\mathfrak{B}}$. Calculate the magnitude of both of the vectors previously calculated.
3. Given,

$$
\mathbf{A}=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]
$$

(a) Is \mathbf{w} in the column space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Col} \mathbf{A}$?
(b) Is \mathbf{w} in the null space of \mathbf{A} ? That is, does $\mathbf{w} \in \operatorname{Nul} \mathbf{A}$?
4. Given,

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

(a) Determine a basis and the dimension of $\mathrm{Nul} \mathbf{A}$.
(b) Determine a basis and the dimension of $\mathrm{Col} \mathbf{A}$.
(c) Determine a basis and the dimension of Row \mathbf{A}.
5. The Hermite polynomials are a sequence of orthogonal polynomials, which arise in probability, combinatorics and physics. ${ }^{1}$ The first four polynomials in this sequence are given as,

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=-2+4 x^{2}, \quad H_{3}(x)=-12 x+8 x^{3}, \quad x \in(-\infty, \infty)
$$

(a) Show that $\mathfrak{B}=\left\{1,2 x,-2+4 x,-12 x+8 x^{3}\right\}$ is a basis for \mathbb{P}_{3}.

Hint: Determine the coordinate vectors of the Hermite polynomials relative to the standard basis.
(b) Let $\mathbf{p}(x)=7-12 x-8 x^{2}+12 x^{3}$. Find the coordinate vector of \mathbf{p} relative to \mathfrak{B}.

Hint: Determine $\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}$ such that $\mathbf{p}(x)=\sum_{i=0}^{3} c_{i} H_{i}(\mathrm{x})$.

[^0]
[^0]: ${ }^{1}$ In physics these polynomials manifest as the spatial solutions to Schrödinger's wave equation under a harmonic potential, which evolves the probability distribution of a quantum mechanical particle near an energy minimum. As it turns out there are infinitely-many Hermite polynomials and consequently one can show that this particle has infinitely-many allowed quantized energy levels, which are evenly spaced.

