\qquad
Sec:
To get full credit, you must show all of your work.

1. Develop a spreadsheet to solve the following problems using Euler's formula. Make sure to have the headers: $\mathrm{k}, \mathrm{t}, \mathrm{y}$, and $\mathrm{f}(\mathrm{t}, \mathrm{y})$ written into your printout. Attach your printouts to this worksheet.
a. Approximate the IVP: $\frac{d y}{d t}=e^{2 t}+y-t, \mathrm{y}(0)=0$ with step size of .2 on the interval $0 \leq t \leq 2$.
b. Now approximate the same IVP on the same interval with a step size of .1 instead.
c. The exact solution to this IVP is: $y(t)=e^{2 t}+t+1-2 e^{t}$. At the endpoint, $t=2$, which is more accurate part (a) or part (b)?
2. Given $\frac{d y}{d t}=y(y+3)(y-5)$,
a. Sketch the phase line and classify all of the equilibrium points.
b. Next to your phase line, sketch the graph of solutions satisfying the initial conditions: $y(0)=-4, y(0)=-1, y(0)=2, y(0)=7$. Put your part (b) on one pair of axis.
c. Describe the long-term behavior, for all of t, of the solution that satisfies the initial condition $\mathrm{y}(0)=2$.
3. Given $\frac{d y}{d t}=\sin \left(y^{2}\right)$,
a. Sketch the phase line and classify all of the equilibrium points on the interval $[-\pi, \pi]$.
b. Next to your phase line, sketch the graph of solutions satisfying the initial conditions: $y(0)=\sqrt{\frac{\pi}{2}}, y(0)=\sqrt{\frac{3 \pi}{2}}$. Put your part (b) on one pair of axis.
c. Describe the long-term behavior, for all of t, of the solution that satisfies the initial condition $y(0)=\sqrt{\frac{\pi}{2}}$.
d. What theorem guarantees that the solutions with different initial conditions will not cross in the graph from part (b)?
4. Find the solution to the following differential equations or initial-value problems using the Method of Undetermined Coefficients.
a. $\frac{d y}{d t}=2 y+5 e^{-t}$
b. $\frac{d y}{d t}+2 y=5 e^{-2 t}$
c. $\frac{d y}{d t}+y=3 \sin (2 t), y(0)=1$
