

Phase matching for parametric mixing

$$\Delta k = k_1 + k_2 - k_3$$

= $\frac{1}{c} (\omega_1 n_1 + \omega_2 n_2 - \omega_3 n_3)$
Note: for wave mixing, phase matching
isn't just matching phase velocities or ref.
indices. For SHG:
 $\Delta k = 2k_1 - k_2 = \frac{2\omega_1}{c} (n_1 - n_2)$

- For negative uniaxial: n_e is lowest, so place ω_3 as *e*-wave
- Type I: ω_1 and ω_2 parallel polarization, along *o*-direction – Generally broader bandwidth for OPA
- Type II: one of lower frequencies is along *e*-direction
 can separate signal and idler with polarizer
- Quasi-phasematching (2.4), periodic poling
- Non-collinear phase matching: momentum conservation is a vector relation

