Lecture 11 Shadowitz: Chapter 2 appendix 2 and 4-1

The two currents in the same direction attract each other in this simple model.

This looks like a multivalued function. However sign is needed for the lower half of circle.

Muddiest points:

- 1.) Other books with examples: Griffiths, Pollack and Stump, Lorain and Coursan Purcell Berkely Physics series, Feynman lectures on E&M
- 2.) Unanswered questions: Please email me or come and see me where I can give individual attention.
 - -derivation of Ampere's law
 - -how to find dr in general
 - -Ampere's law and
- DEST
- -Green's theorem

3.) What is the flux for multiple B's

- 4.) We use Helmholtz theorem just to know we have a unique solution for E and B.
- 5.) More practice on trajectories of particles in E and B.
- 6.) Why draw a surface or tile around a current if curl B is at a point?

Here Ampere's law is applied over the cross section of the wire.

7.) I'll work on the exam this weekend and let you know on Monday the coverage.

Electrostatic lens

What is the div of E at these points? Use divergence theorem to answer.

Let's apply the divergence theorem to the field from a point charge at the origin.

$$\dot{\nabla} = \frac{\hat{r}}{r^2}$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{8r} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{r^2} \frac{1}{r^2} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{r^2} \frac{1}{r^2} \left(\frac{r^2 V_r}{r^2} \right) = p$$

$$\dot{\nabla} = \frac{1}{r^2} \frac{1}{r^2$$

Why is the LHS not equal to the RHS?

Divide by zero in algebra: しょしっ ひょしっ ひょん

How do we deal with this infinity?

Delta function:

$$\int_{0}^{\infty} \delta(x-x') dx = |$$

- 00

$$\int f(x) \delta(x-x') dx = \int (x')$$

How to you calculate delta functions in 3-D (congruous)?

To satisfy the diverence theorem we must have

$$= \left(\frac{(x,y,z)}{\varepsilon_0} = \nabla \cdot E(x,y,z) \right)$$

How is this similar to our results for B (analogy)?

Both the expressions for div E and curl B have the dependence on x,y,z

(.) We derived curl of B in the following way

Which resulted in

Note the same x,y,z dependence even though both integrals for E and B had the primed variables in,them!

Next we need to find the curl of E to uniquely determine E.

First not that the curl operator is linear so the superposition prin. holds.

from your homework

Questions: How do you calculate or show this (congruous)? Just write it out in cartesian coords.

$$\frac{1}{\nabla x} = \frac{1}{2} \frac{1}{2}$$

$$\frac{1}{2} \sqrt{(x, y, z)} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

$$\frac{1}{2} \sqrt{\frac{1}{2} \sqrt{\frac{$$

We can therefore write

Convention

Fundamental theorem of gradients.