These are the dynamic Maxwell equations

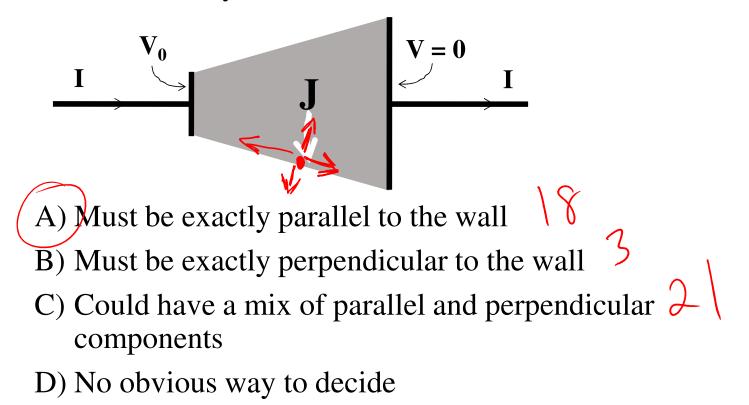
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

What can I do to make them be the dynamic Maxwell equations in matter?

Leave them alone, but attend carefully to what ρ and J are.

- Replace the ε_0 and μ_0 with ε and μ , and let the sources be free sources. () Make a variety of substitutions involving ε , μ , H, and D. B)
- D) A and C
- E) A, B, and C

Inside this resistor setup, what can you conclude about the current density **J** near the side walls?



Let's get some more perspective on the previous. Starting from the continuity equation for current, $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$, derive a general boundary condition on the perpendicular component of J.

A)
$$J_{perp,1} - J_{perp,2} = 0$$

B) $J_{perp,1} - J_{perp,2} = -\frac{\partial \rho}{\partial t}$
C) $J_{perp,1} - J_{perp,2} = -\frac{\partial \sigma}{\partial t}$
D) $J_{perp,1} - J_{perp,2} = -\rho$
E) Something else

Let's make use of that here.

