Resonators
Nesonances: A resonance is when you have a ware that bounces back i forth in some way where subsequent reflections cons. tructively interfere.
Let's look at the simplest optical resonator Fabry-Perot resonator (interferometer).

Reg. 3
All regions same material
Say inc. electric field is E_{0} and there are no losses in mirrors. Each mirror has a reflection coefficient of $R \ldots$ so $R+T=1$
tromencmission

$$
\begin{aligned}
& R=\frac{I_{R}}{I_{\text {inc }}}=\frac{E_{R}^{2}}{E_{0}^{2}} \\
& T=\frac{I_{T}}{I_{\text {inc }}}=\frac{E_{T}^{2}}{E_{0}^{2}} \text { only be- } \begin{array}{l}
\text { on d } \begin{array}{l}
\text { course ware } \\
\text { arise ane are } \\
\text { some. }
\end{array}
\end{array}
\end{aligned}
$$

I'd like to do staff in terms of E so let's define

$$
r=\sqrt{R}=\frac{E_{R}}{E_{0}} ; t=\sqrt{T}=\frac{E_{T}}{E_{0}}
$$

Title: Aug 11-5:51 PM (2 of 5)

Trammission $=\frac{\left|E_{t}\right|^{2}}{E_{0}^{2}}=\left|\frac{E_{0} t^{2} e^{i k L}}{1-r^{2} e^{2 i k L}}\right|^{2} / E_{0}^{2}$
$=\left|\frac{T e^{i k L}}{1-R e^{2 i k L}}\right|^{2}$
$=\frac{(1-R)^{2}}{1 R^{2}+p^{2 i n t}}$

$$
T_{t+t}=\frac{(1-R)^{2}}{1+R^{2}+2 R \cos (2 k L)}
$$

Intensity insode:
$E_{\text {imide }}=\frac{E_{0} e^{i h^{i n / 2}}}{1+r e^{i k 2}} \rightarrow T_{1+} \frac{\left.\left(E_{i}\right)^{2}\right)^{2}}{E_{0}^{2}}=\frac{t^{2}}{1+r^{2}+r\left(e^{(i 2)}+e^{i k 2}\right)}$

$$
\rightarrow I_{\text {nmide }}=\frac{1-R}{1+R+2 \sqrt{R} \cos (k L)}
$$

Reflection:

$$
\begin{aligned}
E_{r} & =-E_{0} r\left(1-\frac{t^{2} e^{2 i k L}}{1-r^{2} e^{2 i k^{2} 2}}\right) \\
& =-E_{0} \sqrt{R}\left(\frac{1-R e^{2 i k l}-(1-R) e^{2 i k L}}{1-R e^{2 i k L}}\right) \\
& =-E_{0} \sqrt{R}\left(\frac{1-e^{2 i k L}}{1-R e^{2 i k L}}\right) \\
\rightarrow R_{+0 t} & =\frac{\left|E_{r}\right|^{2}}{E_{0}^{2}}=R\left(\frac{2-2 \cos (2 k L)}{1+R^{2}-2 R \cos (2 R L)}\right.
\end{aligned}
$$

Transmission

Changing mirror quality

