Physical and Fourier Optics (PHGN570) Homework 1 posted 12 January 2011 due in class 19 January 2011

1. Consider a pulse of the form $f(t) = Ae^{-|t|/b}e^{-i\omega_0 t}$

where *b* is a real, positive constant.

- a. Calculate the Fourier transform $F(\omega) = \Im\{f(t)\}$ by direct integration, manually.
- b. Do this transform using the FourierTransform[] function in Mathematica. Our convention for the transforms requires you use the options FourierParameters $\rightarrow \{1,1\}$.
- c. Let $l(t) = e^{-t}$ for t > 0, and = 0 for t < 0. Calculate the Fourier transform $L(\omega)$ of the decaying exponential function, *l*. Express f(t) in terms of l(t), and use Fourier identities to calculate $F(\omega)$ (no additional integration needed).
- d. Show that for this pulse $\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$ by calculating both sides of the equation, confirming Parseval's theorem. You may use Mathematica for this.
- 2. Given that the Fourier transform of f(t) is $F(\omega)$, find general expressions for the transforms of $g(t) = \int_{0}^{t} f(t') dt'$ and h(t) = df/dt.
- 3. Consider a laser pulse that has a Gaussian temporal shape. The pulse has a center wavelength of 800nm. For several transform-limited pulse durations, calculate the width of the spectrum in angular frequency ($\Delta \omega$) and in wavelength ($\Delta \lambda$). In experimental work, we specify all the widths in terms of the full-width at half maximum (FWHM) of the intensity profile. Do the calculation of $\Delta \omega$ and $\Delta \lambda$ for $\tau_{fwhm} = 3$ fs, 20fs, 100fs and 1ps:
 - you will be able to calculate $\Delta \omega$ analytically from the transform
 - for $\Delta\lambda$ you will need to either solve for the half-power points after converting the profile to wavelength, or the get the widths from a plot
 - To illustrate the distortion in λ space, plot the spectra for the 3fs pulse in both ω and λ space. Comment on the difference in shape.
 - A common way to convert spectral widths is to use the relation $\Delta \omega / \omega_0 = \Delta \lambda / \lambda_0$. This is a very good rule of thumb only if $\Delta \omega / \omega_0 <<1$. Calculate $\Delta \lambda$ from $\Delta \omega$ and compare to your more exact results above.
- 4. Calculate the Fourier transform of a triangle pulse: $f(t) = 1 |t| \quad (-1 < t < 1)$.

You can either do the integral directly or relate the triangle pulse to the autoconvolution of a square pulse.