1. Consider a pulse of the form

$$
f(t)=A e^{-|t| \mid b} e^{-i \omega_{0} t}
$$

where b is a real, positive constant.
a. Calculate the Fourier transform $F(\omega)=\Im\{f(t)\}$ by direct integration, manually.
b. Do this transform using the FourierTransform[] function in Mathematica. Our convention for the transforms requires you use the options FourierParameters $\rightarrow\{1,1\}$.
c. Let $l(t)=e^{-t}$ for $t>0$, and $=0$ for $t<0$. Calculate the Fourier transform $L(\omega)$ of the decaying exponential function, l. Express $f(t)$ in terms of $l(t)$, and use Fourier identities to calculate $F(\omega)$ (no additional integration needed).
d. Show that for this pulse $\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega$ by calculating both sides of the equation, confirming Parseval's theorem. You may use Mathematica for this.
2. Given that the Fourier transform of $f(t)$ is $F(\omega)$, find general expressions for the transforms of $g(t)=\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}$ and $h(t)=d f / d t$.
3. Consider a laser pulse that has a Gaussian temporal shape. The pulse has a center wavelength of 800 nm . For several transform-limited pulse durations, calculate the width of the spectrum in angular frequency $(\Delta \omega)$ and in wavelength ($\Delta \lambda$). In experimental work, we specify all the widths in terms of the full-width at half maximum (FWHM) of the intensity profile. Do the calculation of $\Delta \omega$ and $\Delta \lambda$ for $\tau_{\mathrm{fwhm}}=3 \mathrm{fs}, 20 \mathrm{fs}, 100 \mathrm{fs}$ and $1 \mathrm{ps}:$

- you will be able to calculate $\Delta \omega$ analytically from the transform
- for $\Delta \lambda$ you will need to either solve for the half-power points after converting the profile to wavelength, or the get the widths from a plot
- To illustrate the distortion in λ space, plot the spectra for the 3fs pulse in both ω and λ space. Comment on the difference in shape.
- A common way to convert spectral widths is to use the relation $\Delta \omega / \omega_{0}$ $=\Delta \lambda / \lambda_{0}$. This is a very good rule of thumb only if $\Delta \omega / \omega_{0} \ll 1$. Calculate $\Delta \lambda$ from $\Delta \omega$ and compare to your more exact results above.

4. Calculate the Fourier transform of a triangle pulse: $f(t)=1-|t| \quad(-1<t<1)$.

You can either do the integral directly or relate the triangle pulse to the autoconvolution of a square pulse.

