
Nonlinear optics 
What are nonlinear-optical  effects and why do 

they occur? 

Nonlinear-optical media 

Maxwell's equations in a medium 

Second-harmonic generation 

Sum- and difference frequency generation 

Conservation laws for photons ("Phase-
matching") 

Induced gratings 

Holography 

Phase conjugation and aberration cancellation 

Self-phase modulation 
Some slides courtesy of R. Trebino (Ga Tech) 



Nonlinear optics isn’t something you see 
everyday. 

Sending infrared light into a crystal  
yielded this display of green light 
(second-harmonic generation): 
 
Nonlinear optics allows us to change  
the color of a light beam, to change  
its shape in space and time, and to 
create ultrashort laser pulses. 
 
Why don't we see nonlinear optical 
effects in our daily life? 
 
1. Intensities of daily life are too weak. 
2. Normal light sources are incoherent. 
3. The occasional crystal we see has the wrong symmetry (for SHG). 
4. “Phase-matching” is required, and it doesn't usually happen on its own. 



Why do nonlinear-optical effects occur? 
Recall that, in normal linear optics, a light wave acts on a molecule, which 
vibrates and then emits its own light wave that interferes with the original 
light wave. 

We can also imagine this 
process in terms of the  

molecular energy levels, 
using arrows for the 

photon energies: 



Why do nonlinear-optical effects occur?  

Now, suppose the irradiance is high enough that many molecules 
are excited to the higher-energy state.  This state can then act as 
the lower level for additional excitation.  This yields vibrations at all 
frequencies corresponding to all energy differences between 
populated states. 



Nonlinear optics is analogous to nonlinear 
electronics, which we can observe easily. 

 

Sending a high-volume sine-wave (“pure frequency”) signal into 
cheap speakers yields a truncated output signal, more of a square 
wave than a sine.  !
This square wave has higher frequencies: “harmonics”.!

We hear this as distortion.!



Nonlinear optics and anharmonic oscillators 

For weak fields, motion is harmonic, and linear optics prevails.!
For strong fields (i.e., lasers), anharmonic motion occurs, and higher!
harmonics occur, both in the motion and the light emission.!

Another way to look at nonlinear optics is that the potential of the 
electron or nucleus (in a molecule) is not a simple harmonic potential.!
!
Example:  vibrational motion:!



Nonlinear effects in atoms and molecules 

So an electron’s motion will also depart from a sine wave. 

The potential gets very 
flat out at infinity, so the 
electron’s motion can 
easily go nonlinear!  
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Maxwell's Equations in a Medium 
•  The induced polarization, P,  contains the effect of the medium:  

    


∇⋅E = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = 1

c2

∂E
∂t

+ µ0

∂P
∂t

   
∂2E
∂z2 − 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

•  Sinusoidal waves of all frequencies are solutions to the wave equation 
•  The polarization (P) can be thought of as the driving term for the 
solution to this equation, so the polarization determines which 
frequencies will occur. 

These equations reduce to the wave equation:!

“Inhomogeneous 
Wave Equation”!



Solving the wave equation in the presence 
of linear induced polarization 
For low irradiances, the polarization is proportional to the incident field:!

   P E( ) = ε0χE, D = ε0E+ P = ε0 1+ χ( )E = εE = n2E

 !

In this simple (and most common) case, the wave equation becomes:!

   
∂2E
∂z2 − 1

c2

∂2E
∂t2 = 1

c2 χ
∂2E
∂t2

   E(z, t) = x̂ E(0)cos(kz −ω t)
This equation has a linearly polarized solution:!

The induced polarization only changes the refractive index.!

Where!

Using the fact that:!

  ε0µ0 = 1/ c2

   
∂2E
∂z2 − n2

c2

∂2E
∂t2 = 0Simplifying:!

  
ω= k c, k = 2πn / λ, vph = c / n



Linear propagation 
•  Two waves can propagate independently: 

 
•  This is just like 

 
So:  
•  One wave doesn’t affect the other 
•  Any input frequency stays at that frequency (freq and photon 

energy are conserved) 
•  Medium can be non-uniform (gradients, waveguides, …) 
•  Medium can be birefringent:  
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Writing electric field expressions 
•  Write expression for an E-field linearly polarized in 

the x-direction, propagating in the z direction. 
Frequency ω, wavenumber k. 

•  Write an expression for an E-field: 
y 

z 
θ 

E0 

E z,t( ) = E0 cos kz −ωt( ) = E0 exp ikz − iωt( ) + exp −ikz + iωt( )⎡⎣ ⎤⎦

E y, z,t( ) = E0 −ŷcosθ + ẑsinθ[ ]cos kysinθ + kzcosθ −ωt( )



Maxwell's Equations in a Nonlinear Medium!

What are the effects of such nonlinear terms? !
Consider the second-order term:!
!
!
!
!
!

! !             2w = 2nd harmonic!!
!
Harmonic generation is one of many exotic effects that can arise!!

(1)
0ε χ⎡ ⎤= ⎣ ⎦P E

  

E(t) ∝ E exp(−iωt)+ E* exp(iωt),

          E(t)2 ∝ E2 exp(−2iωt)+ 2 E
2
+ E*2 exp(2iωt)

  
P E( ) = ε0 χ (1)E + χ (2)E2 + χ (3)E3 + ...⎡⎣ ⎤⎦

Nonlinear optics is what happens when the polarization is the result!
of higher-order (nonlinear!) terms in the field (scalars here for now): 



Second-order response: 2 input 
frequencies!
Calculate!
!
With real fields!
!
Then let!
!
Group terms according to their frequency… !
!
and draw arrow diagrams for each process.   !

  P
2( ) ∝ E(t)2

E = E1 + E1
* + E2 + E2

*

E1→ E1e
− iω1 t E2 → E2e

− iω2 t



Sum- and difference-frequency generation 

Suppose there are two different-color beams present: 

  E(t) ∝ E1 exp(−iω1t) + E1
* exp(iω1t) + E2 exp(−iω2t) + E2

* exp(iω2t)
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          + E2
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          + 2E1E2 exp −i(ω1 +ω 2 )t⎡⎣ ⎤⎦ + 2E1
*E2

* exp i(ω1 +ω 2 )t⎡⎣ ⎤⎦
          + 2E1E2

* exp −i(ω1 −ω 2 )t⎡⎣ ⎤⎦ + 2E1
*E2 exp i(ω1 −ω 2 )t⎡⎣ ⎤⎦

          + 2 E1

2
+ 2 E2

2

Note also that, when wi is positive inside the exp, the E in front has a *. 

2nd-harmonic gen 

2nd-harmonic gen 

Sum-freq gen 

Diff-freq gen 

dc rectification 

So: 



Second order processes 

Second harmonic generation 
SHG Dashed line: process is 

non-resonant 
          = “virtual level” 

Sum frequency mixing 
Difference frequency 

mixing 
Optical rectification 
e.g. THz generation 



More complicated nonlinear-optical effects can occur 

The more photons (i.e., the higher the order) the weaker the effect, 
however.  Very-high-order effects can be seen, but they require 
very high irradiance.  Also, if the photon energies coincide with the 
medium’s energy levels as above, the effect will be stronger. 

Nonlinear-optical processes 
are often referred to as: 
 
"N-wave-mixing processes" 
 
where N is the number of  
photons involved (including 
the emitted one). This is a six-
wave-mixing process. 

Emitted-light 
frequency 

ω sig



Induced polarization for nonlinear 
optical effects 

Arrows pointing upward: 
  photons are used up,  
  contribute a factor of the field, Ei to P 
Arrows pointing downward: 
  photons are produced 
  contribute a factor of the complex 
conjugate of the field: 

*12345PEEEEE∝
sig!

  P = ε0χ
(5)E1E2E3E4

*E5



Solving the wave equation in nonlinear optics 

   
∂2E
∂z2 − 1
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Recall the inhomogeneous wave equation:!

Because it’s second-order in both space and time, and P is a 
nonlinear function of E, we can’t easily solve this equation. 
Indeed, nonlinear differential equations are really hard.!
!
We’ll have to make approximations…!
- Slowly-varying envelope approximation: !

  
E z,t( ) = A z( )B t( )exp i k z −ω0 t( )⎡⎣ ⎤⎦ + c.c.
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c2 χ

(2) ∂2
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Separation-of-frequencies approximation 

The total E-field will contain several nearly discrete frequencies,!
w1, w2, etc.!
!
So we’ll write separate (coupled) wave equations for each frequency, 
considering only the induced polarization at the given frequency:!

   
∂2 E1
∂z2 − 1

c2

∂2 E1
∂t2 = µ0

∂2 P1
(2)

∂t2
Where E1 and P1 are the E-field 
and polarization at frequency w1.!

etc.!

This will be a reasonable approximation even for relatively 
broadband ultrashort pulses!

  

∂2 E2

∂z2 − 1
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∂2 P2
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∂t2
Where E2 and P2 are the E-field 
and polarization at frequency w2.!



Phase-matching  
Conservation laws for photons in nonlinear optics 

Adding the frequencies: 
 

     
is the same as energy conservation if 
we multiply both sides by ħ: 

1 2 3 4 5 sigω ω ω ω ω ω+ + − + =     

1 2 3 4 5 sigk k k k k k+ + − + =
     

1 2 3 4 5 sigω ω ω ω ω ω+ + − + =

1 2 3 4 5 sigk k k k k k+ + − + =
     
     polk



wsig!

Adding the k’s conserves momentum:!

The second relation may not be satisfied. 
Ensuring that it is satisfied is called 
"phase-matching.” 



Conservation laws for photons in SHG 

Energy must be conserved: 

1 1 12sig sigω ω ω ω ω+ = ⇒ =

1 1 sigk k k+ =
  

Momentum must also be conserved: 

1 1( ) (2 )n nω ω=

To make the process efficient 

⇒ The phase-matching condition for SHG! 
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Phase-matching Second-Harmonic Generation 

( ) (2 )n nω ω=

ω 2ωFrequency!

R
ef

ra
ct

iv
e 
!

in
de

x!
Unfortunately, dispersion prevents this from ever happening! 

The phase-matching condition for SHG: 



First Demonstration of Second-Harmonic 
Generation 

P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961) 

The second-harmonic beam was very weak because the process 
wasn’t phase-matched. 



First demonstration of SHG:  The Data 
The actual published result… 

Input beam The second harmonic 

Note that the very weak spot due to the second harmonic is missing.  
It was removed by an overzealous Physical Review Letters editor, 
who thought it was a speck of dirt. 



Phase-matching Second-Harmonic 
Generation using birefringence 
Birefringent materials have different refractive indices for different 
polarizations. “Ordinary” and “Extraordinary” refractive indices can 
be different by up to 0.1 for SHG crystals. 

( ) (2 )e on nω ω= ω 2ωFrequency!
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ne depends on propagation angle, so we can tune for a given w. 
Some crystals have ne < no, so the opposite polarizations work. 

We can now satisfy the  
phase-matching condition. 
 
Use the extraordinary polarization 
for w and the ordinary for 2w: 



Input beam 

Light created in real crystals 

Far from  
phase-matching: 

Closer to  
phase-matching: 

SHG crystal 

Input beam 

SHG crystal 

Note that SH beam is brighter as phase-matching is achieved. 

Output beam 

Output beam 



Second-Harmonic Generation 

SHG KDP crystals at Lawrence 
Livermore National Laboratory 
 
These crystals convert as much 
as 80% of the input light to its 
second harmonic. Then 
additional crystals produce the 
third harmonic with similar 
efficiency! 



Difference-Frequency Generation: Optical 
Parametric Generation, Amplification, Oscillation 

w1 

w1 

w3 

w2 = w3 - w1 

Parametric Down-Conversion 
(Difference-frequency generation) 

Optical Parametric 
Oscillation (OPO) 

w3 

w2 

"signal" 

"idler" 

By convention: 
wsignal > widler 

w1 

w3 w2 

Optical Parametric 
Amplification (OPA) 

w1 

w1 

w3 
w2 

Optical Parametric 
Generation (OPG) 

Difference-frequency generation takes many useful forms. 

mirror mirror 



Spontaneous 
parametric down 

conversion 

Crystal “splits” a photon into two.  
 
The quantum properties of the two new 
photons are entangled.  
 
Source for quantum optics experiments.  



OPCPA: optical parametric chirped 
pulse amplification 

OPA can be an alternative to laser amplification: more bandwidth, no 
crystal heating, flexibility on output wavelength….  



Another 2nd-order process: Electro-optics 
Applying a voltage to a crystal changes its refractive indices and 
introduces birefringence.  In a sense, this is sum-frequency 
generation with a beam of zero frequency (but not zero field!).   

A few kV can turn a crystal into a half- or quarter-wave plate. 

V 
If V = 0, the pulse 
polarization doesn’t 
change. 

If V = Vp , the pulse 
polarization switches to its 
orthogonal state. 

Abruptly switching a Pockels cell allows us to switch a pulse into or out 
of a laser. 

“Pockels cell” 

(voltage may be 
transverse or 
longitudinal) 

Polarizer 



Nonlinear Refractive Index 
The refractive index in the presence of linear and nonlinear 
polarization: 
 
 
Now, the usual refractive index (which we’ll call n0) is: 
 
So: 
 
Assume that the nonlinear term << n0 : 
 
So: 
 
Usually, we define a “nonlinear refractive index”: 

  
n = 1+ χ (1) + χ (3) E

2

  n0 = 1+ χ (1)

2 22 (3) (3) 2
0 0 01 /n n E n E nχ χ= + = +

2 2(3) 2 (3)1
0 0 0 021 / / 2n n E n n E nχ χ⎡ ⎤≈ + ≈ +⎣ ⎦

2I E∝since   n ≈ n0 + n2 I

(3)
2 0/ 2n nχ∝



Nonlinear wave equation 
•  With degenerate frequencies, NL equation is 

•  With slowly-varying envelope equation and 
dispersion, we get the nonlinear Schrodinger 
equation: 

   
∂2E
∂z2 − n2

c2

∂2E
∂t2 = 1

c2 χ
(3) ∂2

∂t2 E
2
E( )

  
∂A
∂z

+ i
β2

2
− ∂2 A

∂t2 = iγ A
2

A



The irradiance of two crossed beams is sinusoidal, inducing a sinusoidal 
absorption or refractive index in the medium––a diffraction grating! 

Many nonlinear-optical effects can be 
considered as induced gratings. 

An induced grating results from the cross term in the irradiance: 
*12EE

( )*1 2 3sigE E E E∝

  

Re E1 exp i(kz cosθ + kx sinθ −ω t)⎡⎣ ⎤⎦E2
* exp −i(kz cosθ − kx sinθ −ω t)⎡⎣ ⎤⎦{ }

    ∝ Re E1E2
* exp 2 i k x sinθ⎡⎣ ⎤⎦{ }

This is just a generic  
four-wave-mixing effect. 

A third beam will then diffract  
into a different direction. 
This yields a beam that’s the 
product of E1, E2*, and E3: 



Transient gratings and coherent spectrosopy 
•  Pump-probe experiments can investigate properties of materials 
•  Three main output 

directions 
•  k4= -k1+k2+k3 
•  k5=k1-k2+k3  
•  k6=k1+k2-k3 

t12: coherence time 
t23: population time 



Induced gratings with plane waves  
and more complex beams 

Two plane waves                         A plane wave and a 
                very distorted wave 

A plane wave and a 
slightly distorted wave  

All such induced gratings will diffract a plane wave, reproducing 
the distorted wave.  



Holography is an 
induced-grating 
process. 

Recording is interference of 
   smooth reference beam +  
   scattered object beam 
Interferogram = hologram records 3D 
info in the phase of the object field  
Readout is from a third beam  
  plane wave diffracts off the grating 
  scattered wave acquires the image 
information.   

The light 
phase 
stores the 
angular 
info. 



Phase conjugation 
When a nonlinear-optical effect produces a light wave proportional 
to E*, the process is called a phase-conjugation process.  Phase 
conjugators can cancel out aberrations. 

The second traversal through the medium cancels 
out the phase distortion caused by the first pass! 

A normal mirror leaves 
the sign of the phase 
unchanged 

A phase-conjugate 
mirror reverses the 
sign of the phase  

[ ]exp ikz
( ),x yϕ

()()exp,ikzixyϕ−−⎡⎤⎣⎦

( )exp ,ikz i x yϕ−⎡ ⎤⎣ ⎦

( ) ( )exp ,i k z i x yϕ− +⎡ ⎤⎣ ⎦( ) ( ) ( )exp[ , , ]i k z i x y i x yϕ ϕ− + −

Distorting 
medium 

()()exp2,ikzixyϕ−−⎡⎤⎣⎦



Self-Phase Modulation & Continuum Generation 
The self-modulation develops a phase vs. time proportional to the 
input pulse intensity vs. time. 

That is: 
2( , ) ( )z t n k z I tφ =

A flat phase vs. time yields the narrowest spectrum. If we assume the 
pulse starts with a flat phase, then SPM broadens the spectrum. 
 
This is not a small effect! A total phase variation of hundreds can occur! A 
broad spectrum generated in this manner is called a Continuum. 

[ ]2(0, ) exp ( )sigE t in k I t z∝

Pulse Intensity vs. time The further the pulse 
travels, the more  
modulation occurs. 

[ ] { }0 2( , ) (0, ) exp (0, ) exp [ ( )]sig sig sigE z t E t i nk z E t i n n I t k z= = +



Experimental Continuum  
spectrum in a fiber 

Continua created by 
propagating 500-fs 625-
nm pulses through 30 cm 
of single-mode fiber. 

The Supercontinuum 
Laser Source, Alfano, 
ed. 

Low 
Energy 
 
 
 
Medium 
Energy 
 
 
 
High 
Energy 

Broadest spectrum 
occurs for highest 
energy. 



UV Continuum in Air! 

308 nm input pulse; weak focusing with a 1-m lens. !

The Supercontinuum!
Laser Source, Alfano, ed.!



The continuum from 
microstructure optical 
fiber is ultrabroadband. 

The spectrum extends 
from ~400 to ~1500 nm 
and is relatively flat (when 
averaged over time). 

This continuum was created using unamplified Ti:Sapphire pulses. 
J.K. Ranka, R.S. Windeler, and A.J. Stentz, Opt. Lett. Vol. 25, pp. 25-27, 2000 

Cross section of the 
microstructure fiber. 



Continuum is quite beautiful! 


