
1. Problem 1

(a) Assume that, u(x, t) = F (x)G(t) then uxx = F ′′(x)G(t) and ut = F (x)G′(t) and the 1-D heat equation becomes,

G′(t)
c2G(t)

=
F ′′(x)
F (x)

= −λ, (1)

where we have introduced the separation constant λ.1 From this equation we have the two ODE’s,

G′(t) + λc2G(t) = 0, (2)

F ′′(x) + λF (x) = 0. (3)

Each of these ODE’s can be solved through ‘elementary methods’ to get,2

λ ∈ R : G(t) = Ae−λc
2t, A ∈ R, (4)

λ ∈ R+ : F (x) = c1 cos(
√
λx) + c2 sin(

√
λx), (5)

λ ∈ R− : F (x) = c3 cosh(
√
|λ|x) + c4 sinh(

√
|λ|x), (6)

λ = 0 : F (x) = c5 + c6x. (7)

Each of the functions F (x) must also satisfy the boundary conditions, ux(0, t) = 0 and ux(L, t) and so we won’t need
all of them. Notice that the boundary conditions imply that,

ux(0, t) = F ′(0)G(t) = 0, (8)

ux(L, t) = F ′(L)G(t) = 0, (9)

which gives F ′(0) = 0 and F ′(L) = 0.3 So, we now have to determine, which of the previous functions, F (x), satisfy
these boundary conditions. To this end we have the following arguments,

λ ∈ R+ : F ′(0) = −c1
√
λ sin(

√
λ0) + c2

√
λ cos(

√
λ0) = c1

√
λ · 0 + c2

√
λ · 1⇒ c2 = 0,

λ ∈ R+ : F ′(L) = −c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = c1

√
λ · sin(

√
λL) + 0 ·

√
λ cos(

√
λL)⇒

⇒ c1
√
λ · sin(

√
λL) = 0 ⇐⇒ c1 = 0 or sin(

√
λL) = 0.

If we consider the case that c1 = 0 then we have F (x) = 0 for λ ∈ R+ but we should try to keep as many solutions as
possible and we ignore this case. Thus assume that c1 6= 0 we have that sin(

√
λL) = 0, which is true for

√
λ = nπ/L

and we have the following eigenvalue/eigenfunction pairs indexed by n,

Fn(x) = cn cos(
√
λx), λn =

n2π2

L2
, n = 1, 2, 3, . . . . (10)

We now consider the λ ∈ R− case to find that,

λ ∈ R− : F ′(x) = c3
√
|λ| sinh(

√
|λ|0) + c4

√
|λ| cosh(

√
|λ|0) = c3 · 0 + c4 · 1 = 0⇒ c4 = 0,

λ ∈ R− : F ′(x) = c3
√
|λ| sinh(

√
|λ|L) + c4

√
|λ| cosh(

√
|λ|L) = c3

√
|λ| sinh(

√
|λ|L) + 0 ·

√
|λ| cosh(

√
|λ|L) =

= c3
√
|λ|e
√
|λ|L − e−

√
|λ|L

2
= 0⇒ c3 = 0,

which means that for λ ∈ R− we only have the trivial solution F (x) = 0. Lastly, we consider the case λ = 0 to get,

λ = 0 : F ′(0) = F ′(L) = c6 = 0⇒ c5 ∈ R, (11)

1This occurs in conjunction with the following argument. Since (25) must be true for all (x, t) then both sides must be equal to a function that has

neither t’s nor x’s. Hence they must be equal to a constant function. To see that this is true put an x or t on the side that has λ and test points.
2These elementary methods are those you learned in ODE’s and can be found in the solutions to Homework 9 problem 1a.
3We assume that G(t) = 0 because if it did then we would have u(x, t) = F (x)G(t) = F (x) · 0 = 0, which is called the trivial solution and is ignored

since it is already in thermal equilibrium. We care about dynamics!
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which gives the last eigenpair,4

F0 = c0 ∈ R λ0 = 0. (12)

Noting that there are infinitely many λ’s implies now that there are infinitely many temporal solutions (4) and we
have,

Gn(t) = Ane
λnc

2t, λ =
n2π2

L2
, n = 1, 2, 3, . . . . (13)

For the case where λ = 0 we have the ODE G′(t) = 0, whose solution isG0(t) = A0 ∈ R. Thus we have infinitely many
functions, that solve the PDE, of the form:

un(x, t) = Fn(x)Gn(t), n = 0, 1, 2, 3, . . . (14)

Hence since the PDE is linear superposition implies that we have the general solution,

u(x, t) =
∞∑
n=0

un(x, t) = u0(x, t) +
∞∑
n=1

un(x, t) (15)

= F0(x)G0(x) +
∞∑
n=1

Fn(x)Gn(t) (16)

= c0 ·A0 +
∞∑
n=1

Ancn cos(
√
λnx)eλnc

2t (17)

= a0 +
∞∑
n=1

a0 cos(
√
λnx)eλnc

2t, (18)

which is the general solution of the heat equation with the given boundary conditions.

(b) Describe the long term behaviour as k is increased and as ρ is increased.

If k(thermal conductivity) is increased, the temporal solution decays faster and the system reaches equilibrium
sooner.
If ρ(density) is increased, the temporal solution decays slower and the system takes longer to reach equilibrium.

(c) To find the unknown constants present in the general solution we must apply an initial condition, u(x, 0) = f(x).
Doing so gives,

u(x, 0) = f(x) = a0 +
∞∑
n=1

a0 sin(
√
λnx)eλnc

2·0 (19)

= a0 +
∞∑
n=1

a0 cos(
√
λnx), (20)

which is a Fourier cosine half-range expansion of the initial condition. Thus the unknown constants are Fourier
coefficients and,

a0 =
1
L

∫ L

0

f(x)dx, (21)

an =
2
L

∫ L

0

f(x) cos(
√
λnx)dx. (22)

If we note homework7 problem1 then we known these Fourier coefficients as,

a0 =
k

2
, (23)

an =
4k
n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
. (24)

Moreover, if we take L = k = 1 we see that lim
t→∞

u(x, t) = a0 = .5, which implies that under these insulating boundary
conditions the equilibrium state for the medium is a constant function u = .5 and that this is nothing more than the
average of the initial configuration.

4Here we have used the subscripts to denote that these are all associated with the λ = 0 case. We have also trivially changed c5 to c0.
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2. Problem 2 : Recall the 1-D conservation law

∂u

∂t
= −k∂φ

∂x
(8)

(a) Assume that φ is proportional to u, to derive the convection/transport equation ut + cux = 0

φ = αu

∂φ

∂x
= α

∂u

∂x
∂u

∂t
= −k∂Q

∂x
⇒ ∂u

∂t
= −αk∂u

∂x
⇒ ut + cux = 0

(b) Given that u(x, 0) = u0(x) show that u(x, t) = u0(x− ct) is a solution.

u(x, t) = u0(x− ct)

ut = −cu′0 ux = u′0

ut + cux = −cu′0 + cu′0 = 0

(c) If φ(x, t) = cu− dux, derive from (8) the convection-diffusion equation ut + cux − duxx

∂φ

∂x
= c

∂u

∂x
− d∂

2u

∂x2

∂u

∂t
= −k∂φ

∂x
⇒ ∂u

∂t
= −c∂u

∂x
+ d

∂2u

∂x2

⇒ ut + cux − duxx = 0

(d)
ut = Duxx − cux − λu (9)

Assume that u(x, t) = w(x, t)eαx−βt and show that (a) can be transformed into a heat equation on the variable w
where α = c

2D and β = λ+ c2

4D

ut = wte
αx−βt + wβeαx−βt

ux = wxe
αx−βt + wαeαx−βt

uxx = wxxe
αx−βt + 2wxαeαx−βt + wα2eαx−βt

ut = Duxx − cux − λu

wte
αx−βt − wβeαx−βt = Dwxxe

αx−βt +D2wxαeαx−βt +Dwα2eαx−βt −

−cwxeαx−βt − cwαeαx−βt − λweαx−βt

⇒ wt − βw = Dwxx + 2Dαwx +Dwα2 − cwx − cαw − λw

wt = Dwxx + (2Dα− c)wx + (β − cα+Dα2 − λ)w

wt = Dwxx + 2D
( c

2D
− c
)
wx +

(
λ+

c2

4D
− c2

2D
+
Dc2

4D2

)
w

wt = Dwxx ← heat equation on variable w

3. Problem 3 : The only difference between this problem and problem 1 are the time dynamics specified by the PDE. This
gives a second-order ODE in time and from this ODE we have oscillations of Fourier modes instead of exponential decay.
Work showing this follows.

(a) Assume that, u(x, t) = F (x)G(t) then uxx = F ′′(x)G(t) and ut = F (x)G′′(t) and the 1-D heat equation becomes,

G′′(t)
c2G(t)

=
F ′′(x)
F (x)

= −λ, (25)
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where we have introduced the separation constant λ.5 From this equation we have the two ODE’s,

G′′(t) + λc2G(t) = 0, (26)

F ′′(x) + λF (x) = 0. (27)

Each of these ODE’s can be solved through ‘elementary methods’ to get,6

λ ∈ R+ : G(t) = A cos(
√
λct) +A∗ sin(

√
λct), A,A∗ ∈ R, (28)

λ = 0 : G(t) = A+A∗t, A,A∗ ∈ R, (29)

λ ∈ R+ : F (x) = c1 cos(
√
λx) + c2 sin(

√
λx), (30)

λ ∈ R− : F (x) = c3 cosh(
√
|λ|x) + c4 sinh(

√
|λ|x), (31)

λ = 0 : F (x) = c5 + c6x. (32)

Notice there are different time functions than before. This highlights the departure from the heat equation dynamics.7

Each of the functions F (x) must also satisfy the boundary conditions, ux(0, t) = 0 and ux(L, t) and so we won’t need
all of them. Notice that the boundary conditions imply that,

ux(0, t) = F ′(0)G(t) = 0, (33)

ux(L, t) = F ′(L)G(t) = 0, (34)

which gives F ′(0) = 0 and F ′(L) = 0.8 So, we now have to determine, which of the previous functions, F (x), satisfy
these boundary conditions. To this end we have the following arguments,

λ ∈ R+ : F ′(0) = −c1
√
λ sin(

√
λ0) + c2

√
λ cos(

√
λ0) = c1

√
λ · 0 + c2

√
λ · 1⇒ c2 = 0,

λ ∈ R+ : F ′(L) = −c1
√
λ sin(

√
λL) + c2

√
λ cos(

√
λL) = c1

√
λ · sin(

√
λL) + 0 ·

√
λ cos(

√
λL)⇒

⇒ c1
√
λ · sin(

√
λL) = 0 ⇐⇒ c1 = 0 or sin(

√
λL) = 0.

If we consider the case that c1 = 0 then we have F (x) = 0 for λ ∈ R+ but we should try to keep as many solutions as
possible and we ignore this case. Thus assume that c1 6= 0 we have that sin(

√
λL) = 0, which is true for

√
λ = nπ/L

and we have the following eigenvalue/eigenfunction pairs indexed by n,

Fn(x) = cn cos(
√
λx), λn =

n2π2

L2
, n = 1, 2, 3, . . . . (35)

We now consider the λ ∈ R− case to find that,

λ ∈ R− : F ′(x) = c3
√
|λ| sinh(

√
|λ|0) + c4

√
|λ| cosh(

√
|λ|0) = c3 · 0 + c4 · 1 = 0⇒ c4 = 0,

λ ∈ R− : F ′(x) = c3
√
|λ| sinh(

√
|λ|L) + c4

√
|λ| cosh(

√
|λ|L) = c3

√
|λ| sinh(

√
|λ|L) + 0 ·

√
|λ| cosh(

√
|λ|L) =

= c3
√
|λ|e
√
|λ|L − e−

√
|λ|L

2
= 0⇒ c3 = 0,

which means that for λ ∈ R− we only have the trivial solution F (x) = 0. Lastly, we consider the case λ = 0 to get,

λ = 0 : F ′(0) = F ′(L) = c6 = 0⇒ c5 ∈ R, (36)

which gives the last eigenpair,9

F0 = c0 ∈ R λ0 = 0. (37)
5This occurs in conjunction with the following argument. Since (25) must be true for all (x, t) then both sides must be equal to a function that has

neither t’s nor x’s. Hence they must be equal to a constant function. To see that this is true put an x or t on the side that has λ and test points.
6These elementary methods are those you learned in ODE’s and can be found in the solutions to Homework 9 problem 1a.
7Based on problem1 and our studies in class we do not seek to find a time function for λ < 0 since we know that the spatial function associated with

these eigenvalues will not satisfy the boundary conditions.
8We assume that G(t) = 0 because if it did then we would have u(x, t) = F (x)G(t) = F (x) · 0 = 0, which is called the trivial solution and is ignored

since it is already in thermal equilibrium. We care about dynamics!
9Here we have used the subscripts to denote that these are all associated with the λ = 0 case. We have also trivially changed c5 to c0.
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Noting that there are infinitely many λ’s implies now that there are infinitely many temporal solutions (28) and we
have,

Gn(t) = An cos(
√
λnct) +A∗n sin(

√
λnct), λ =

n2π2

L2
, n = 1, 2, 3, . . . . (38)

For the case where λ = 0 we have the ODE G′′(t) = 0, whose solution isG0(t) = A0 + A∗0t. Thus we have infinitely
many functions, that solve the PDE, of the form:

un(x, t) = Fn(x)Gn(t), n = 0, 1, 2, 3, . . . (39)

Hence since the PDE is linear superposition implies that we have the general solution,

u(x, t) =
∞∑
n=0

un(x, t) = u0(x, t) +
∞∑
n=1

un(x, t) (40)

= F0(x)G0(x) +
∞∑
n=1

Fn(x)Gn(t) (41)

= c0 · (A0 +A∗0t) +
∞∑
n=1

Ancn cos(
√
λnx)eλnc

2t (42)

= a0 + a∗0t+
∞∑
n=1

[
an cos(

√
λnct) + a∗n sin(

√
λnct)

]
cos(

√
λnx), (43)

which is the general solution of the wave equation with the given boundary conditions.

(b) To find the unknown constants present in the general solution we must apply an initial condition, u(x, 0) = f(x) and
ut(x, 0) = g(x). Noting that g(x) = 0, since there is no initial velocity, implies that a∗0 = a∗n = −. Calculating the rest
we find,

u(x, 0) = f(x) = a0 +
∞∑
n=1

a0 sin(
√
λnx)eλnc

2·0 (44)

= a0 +
∞∑
n=1

a0 cos(
√
λnx), (45)

which is a Fourier cosine half-range expansion of the initial condition. Thus the unknown constants are Fourier
coefficients and,

a0 =
1
L

∫ L

0

f(x)dx, (46)

an =
2
L

∫ L

0

f(x) cos(
√
λnx)dx. (47)

If we note homework7 problem1 then we known these Fourier coefficients as,

a0 =
k

2
, (48)

an =
4k
n2π2

[
2 cos

(nπ
2
x
)
− (−1)n − 1

]
. (49)

4. We begin with,

dspu(x, t) =
1
2

[u0(x− ct) + u0(x+ ct)] +
1
2c

∫ x+ct

x−ct
v0(y)dy. (50)

To show that this is a solution to the wave equation we find its partial derivatives, utt and uxx and see if they maintain
equality in the wave equation. First note that the chain rule implies,

∂

∂t
u0(x− ct) =

∂u0(x− ct)
∂[x− ct]

∂[x− ct]
∂t

(51)

= u′0(x− ct) · (−c), (52)
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and that the chain-rule with the fundamental theorem of calculus implies,

∂

∂t

∫ x+ct

0

v0(y)dy = v0(x+ ct) · ∂[x+ ct]
∂t

(53)

= v0(x+ ct) · c. (54)

Thus we have that,

utt =
1
2
[
c2u′′0(x− ct) + c2u′′0(x+ ct)

]
+

1
2c
[
c2v′0(x+ ct)− c2v′0(x− ct)

]
, (55)

uxx =
1
2

[u′′0(x− ct) + u′′0(x+ ct)] +
1
2c

[v′0(x+ ct)− v′0(x− ct)] , (56)

which implies that utt = c2uxx.

5. Consider the non-homogeneous 1-D wave equation

∂2u

∂t2
= c2

∂2u

∂x2
+ F (x, t) (10)

Letting F(x,t)=Asin(wt) gives the following Fourier Series for F

F (s, t) =
∞∑

n=−1

fn(t)sin
(nπx
L

)
(14)

fn(t) =
2A
nπ

(1− (−1)n)sin(wt) (15)

(a) Show that substituting (14)-(15) into (10) gives

Gn +
(cnπ
L

)2

Gn =
2A
nπ

(1− (−1)n)sin(wt) (16)

F (x, t) = Fn(x)fn(t) =
∞∑
n=1

fn(t)sin
(nπx
L

)
⇒ Fn(x) =

∞∑
n=1

sin
(nπx
L

)
u(x, t) = Fn(t)Gn(t)

∂2u

∂t2
= Fn(t)G′′n(t) =

∞∑
n=1

G′′n(t)sin
(nπx
L

)
∂2u

∂x2
= F ′′n (t)Gn(t) =

∞∑
n=1

−
(
L

nπ

)2

Gn(t)sin
(nπx
L

)
∂2u

∂t2
= c2

∂2u

∂x2
+ F (x, t)

⇒
∞∑
n=1

G′′nsin
(nπx
L

)
=
∞∑
n=1

Gn

(cnπ
L

)2

sin
(nπ
L

)
+
∞∑
n=1

fn(t)sin
(nπx
L

)
⇒

∞∑
n=1

G′′nsin
(nπx
L

)
=
∞∑
n=1

[
−
(cnπ
L

)2

Gn + fn(t)
]
sin
(nπx
L

)
↑ for this statement to be true, the coefficients must be equal

⇒ G′′n = −
(cnπ
L

)2

Gn + fn(t)

⇒ G′′n +
(cnπ
L

)2

Gn =
2A
nπ

(1− (−1)n)sin(wt)

(b) The solution to (16) is given by

G(t) = Bncos
(cnπ
L
t
)

+B?nsin
(cnπ
L
t
)

+Gp(t)
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i. If w 6= cnπ
L , what would be your choice for Gp(t)if you were using the method of undetermined coefficients?

Gp(t) = Acos(wt) +Bsin(wt)

ii. If w = cnπ
L what would be your choice for Gp(t)?

Gp(t) = Atcos
(cnπ
L
t
)

+Btsin
(cnπ
L

)
iii. For (ii), what is the limt→∞ u(x, t)?

lim
t→∞

u(x, t) =∞

iv. What does this limit imply physically?

This is called resonance and implies that the magnitude of oscillation approaches infinity as t gets larger
and likely the object/string would break under these forces.
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