Interaction of light with atoms: Line shapes and cross-sections

Summary of time-dependent perturbation theory approach
Fermi's Golden rule and lineshapes
Cross-sections
Reading: Svelto 2.4

Full QM approach

- Next level up in accuracy in QM is to approximately solve the Schrodinger equation in the presence of the incident field
- QM representation of the electron wavefunction $\psi(\mathbf{r}, t)$
- Classical representation of the EM field as a perturbation

$$
\hat{H} \psi=i \hbar \frac{\partial \psi}{\partial t} \quad \hat{H}=\hat{H}_{0}+\hat{H}^{\prime}
$$

- Without external field:

With external field (E-dipole):

$$
\hat{H}_{0} \psi=i \hbar \frac{\partial \psi}{\partial t} \rightarrow \hat{H}_{0} \psi_{n}=E_{n} \psi_{n} \quad \hat{H}^{\prime}=\mu \cdot \mathbf{E}=-e \mathbf{r} \cdot \mathbf{E}_{\mathbf{0}} \sin \omega t
$$

- Assume wavefunction with field can be written in terms of a linear combination of wavefunctions without field

$$
\psi(r, t)=\sum_{n} a_{n}(t) \psi_{n}(r, t) \quad \psi_{n}(\mathbf{r}, t)=u_{n}(\mathbf{r}) e^{-E_{n} t / \hbar}
$$

Framing the QM calculation

- Time-dependent SE with external field

$$
\begin{aligned}
& \hat{H} \psi=i \hbar \frac{\partial \psi}{\partial t} \\
& i \hbar \frac{\partial \psi}{\partial t}=\left(\hat{H}_{0}+\hat{H}^{\prime}\right) \psi=\left(\hat{H}_{0}-e \mathbf{r} \cdot \mathbf{E}_{0} \sin \omega t\right) \psi
\end{aligned}
$$

- Applied field is built into the calculation
- Dot product ensures r is along E
- Equation describes evolution of wavefunction
- Independent of initial state
- Absorption and stimulated emission are the same, only initial state is different

Spontaneous emission and QED

- What if there is no incident field?
- If atom is in an excited state, it is in an unstable equilibrium.
- But the vacuum fluctuations of the EM field (QED) "stimulate" emission spontaneously.
- Concept leads to "cavity QED" experiments, where an external cavity is used to shape/control the background radiation spectrum to enhance or suppress spontaneous emission.

Time-dependent perturbation theory

- Easiest to concentrate on 2 levels
- Assume input frequency is close to resonance:

$$
\omega \approx\left(E_{2}-E_{1}\right) / \hbar=\omega_{21}
$$

- Assume weak probability of excitation:

$$
a_{1}(t) \approx 1, \quad a_{2}(t) \ll 1
$$

- Put form of solution into time-dependent SE (with field)
- Transition rate (in Hz) will be

$$
W_{12}=\frac{d}{d t}\left|a_{2}(t)\right|^{2}
$$

- Result: "Fermi's Golden Rule"

$$
W_{12}(v)=\frac{\pi^{2}}{3 h^{2}}\left|\mu_{12}\right|^{2} E_{0}^{2} \delta\left(v-v_{0}\right)
$$

$$
\begin{aligned}
& \delta\left(v-v_{0}\right) \text { Dirac delta function } \\
& \int f(v) \delta\left(v-v_{0}\right) d v=f\left(v_{0}\right)
\end{aligned}
$$

Using Fermi's golden rule

- Fermi's "Golden rule" $W_{12}(v)=\frac{\pi^{2}}{3 h^{2}}\left|\mu_{12}\right|^{2} E_{0}{ }^{2} \delta\left(v-v_{0}\right)$
- To get a rate, we must integrate over frequency
- Implicitly, the field ${ }^{2}$ in this expression is connected to the spectral energy density:

$$
\rho_{v}=\frac{1}{2} n^{2} \varepsilon_{0} E_{0}^{2}
$$

- This way we get a total transition rate by integrating over frequency

$$
\rightarrow W_{12}(v)=\frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v} \delta\left(v-v_{0}\right)
$$

- Total rate is obtained by integrating over all frequency:

$$
W_{12}=\int \frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v} \delta\left(v-v_{0}\right) d v=\frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v_{0}}
$$

Absorption with blackbody incident field

- Spectral energy density for blackbody:

$$
\rho_{v}=\frac{8 \pi v^{2}}{(c / n)^{3}} \frac{h v}{e^{h v / k_{B} T}-1}
$$

- Integration with the delta function assigns $v \rightarrow v_{0}$

$$
\begin{aligned}
& W_{12}=\int \frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v} \delta\left(v-v_{0}\right) d v=\frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v_{0}} \\
& W_{12}=\frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \frac{8 \pi v^{2}}{(c / n)^{3}} \frac{h v}{e^{h \nu v k_{B} T}-1}
\end{aligned}
$$

- Check units:

$$
W_{12}=\frac{2 \pi^{2}}{3 n^{2} h^{2}} \frac{e^{2} x^{2}}{\varepsilon_{0}} \frac{x}{x} \frac{8 \pi v^{2}}{(c / n)^{3}} \frac{h v}{e^{h v / k_{0} T}-1} \rightarrow \frac{1}{(J s)^{2}} J^{3} \frac{s^{-2}}{\left(m s^{-1}\right)^{3}} J=s^{-1}
$$

Working with spectral lineshapes

- For atomic system, replace Dirac delta with transition lineshape

$$
\int g\left(v-v_{0}\right) d v=1
$$

- Lorentzian lineshape (radiative, collisional broadening)

$$
\begin{aligned}
& \delta\left(v-v_{0}\right) \rightarrow g_{L}\left(v-v_{0}\right)=\frac{2}{\pi \Delta v_{0}} \frac{1}{1+\left(\frac{2\left(v-v_{0}\right)}{\Delta v_{0}}\right)^{2}} \\
& \Delta v_{0} \text { FWHM }
\end{aligned}
$$

- Doppler broadened (Gaussian) lineshape

$$
\delta\left(v-v_{0}\right) \rightarrow g_{G}{ }^{*}\left(v-v_{0}\right)=\frac{2}{\Delta v_{0}{ }^{*}} \sqrt{\frac{\ln 2}{\pi}} \exp \left\{-4 \ln 2 \frac{\left(v-v_{0}\right)^{2}}{\Delta v_{0}{ }^{* 2}}\right\}
$$

Lorentzian vs Gaussian lineshapes

- Lorentzian is much broader in spectral wings than Gaussian

Lorentzian lineshape

- Complex Lorentzian separated into Re and Im

$$
\frac{1}{\gamma-i\left(\omega-\omega_{0}\right)}=\frac{\gamma}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2}}+i \frac{\left(\omega-\omega_{0}\right)}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2}}
$$

- Real part corresponds to absorption effects
- Normalize

$$
c \int \frac{\gamma}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2}} d \omega=c \gamma \frac{\pi}{\gamma}=1 \rightarrow g_{L}\left(\omega-\omega_{0}\right)=\frac{\gamma / \pi}{\left(\omega-\omega_{0}\right)^{2}+\gamma^{2}}
$$

- Convert ω to v

$$
c \int \frac{\gamma}{4 \pi^{2}\left(v-v_{0}\right)^{2}+\gamma^{2}} d v=c \gamma \frac{1}{2 \gamma}=1
$$

$$
\rightarrow g_{L}\left(v-v_{0}\right)=\frac{2}{\gamma}\left[1+\left(\frac{2\left(v-v_{0}\right)}{\gamma / \pi}\right)^{2}\right]^{-1}=\frac{2}{\pi \Delta v_{0}}\left[1+\left(\frac{2\left(v-v_{0}\right)}{\Delta v_{0}}\right)^{2}\right]^{-1}
$$

Natural broadening

- Radiative broadening results directly from the spontaneous emission lifetime of the state
- Fourier transforms
- Forward: FT

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{i \omega t} d t
$$

- Inverse: FT^{-1}

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega t} d \omega
$$

- Suppose exponential, oscillating decay in time domain

$$
\begin{aligned}
& f(t)=\begin{array}{cl}
e^{-\gamma t} e^{-i \omega_{0} t} & \text { for } t \geq 0 \\
0 & \text { for } t<0
\end{array} \\
& F(\omega)=\int_{0}^{\infty} e^{-\gamma t-i \omega_{0} t} e^{i \omega t} d t=\left.\frac{e^{\left(-\gamma+i\left(\omega-\omega_{0}\right)\right) t}}{-\gamma+i\left(\omega-\omega_{0}\right)}\right|_{0} ^{\infty}=\frac{1}{\gamma-i\left(\omega-\omega_{0}\right)}
\end{aligned}
$$

Fermi's golden rule generalized

- To account for the transition lineshape:

$$
W_{12}(v)=\frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \rho_{v} \delta\left(v-v_{0}\right) \rightarrow \frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{21}\right|^{2} \rho_{v} g\left(v-v_{0}\right)
$$

- Example: narrow linewidth laser incident on atom

$$
\rho_{v}=\frac{n}{c} I \delta\left(v-v_{L}\right)
$$

- Total transition rate:

$$
\begin{aligned}
& W_{12}=\int \frac{2 \pi^{2}}{3 n^{2} \varepsilon_{0} h^{2}}\left|\mu_{12}\right|^{2} \frac{n}{c} I \delta\left(v-v_{L}\right) g\left(v-v_{0}\right) d v \\
& W_{12}\left(v_{L}\right)=\frac{2 \pi^{2}}{3 n \varepsilon_{0} c h^{2}}\left|\mu_{12}\right|^{2} I g\left(v_{L}-v_{0}\right)
\end{aligned}
$$

Cross sections

- It is inconvenient to carry around all these constants and to use the dipole moments
- Use values that connect to what we can measure
- Consider a beam passing through a gas of atoms with number density N_{t} (atoms/unit volume)
- Power absorbed/unit volume:

$$
\frac{d P_{a}}{d V}=W_{12} N_{t} h v
$$

- Photon flux (photons/area/sec) $\quad F=\frac{I}{h v}$
- Power in beam:

$$
P=I A=h \nu F A
$$

- Evolution of flux:

$$
\frac{d F}{d z}=\frac{1}{h v} \frac{1}{A} \frac{d P}{d z}=-\frac{1}{h v} \frac{d P_{a}}{d V}=-W_{12} N_{t}
$$

Cross sections

- Flux decreases as beam propagates in medium

$$
\frac{d F}{d z}=-W_{12} N_{t}
$$

- Define total absorption cross-section: $\quad \sigma_{12}=\frac{W_{12}}{F}$
- So that: $\frac{d F}{d z}=-N_{t} \sigma_{12} \rightarrow F(z)=F_{0} e^{-N_{t} \sigma_{12} z}$
- Physically, the cross-section is an effective area of the atom. In a low density gas, the beam of photons sees a collection of spheres:

$$
\frac{d F}{F}=-N_{t} A d z \frac{\sigma_{12}}{A}
$$

Frequency-dependent cross section

- Total cross section is obtained by integrating over lineshape (h for homogeneous):

$$
\sigma_{12}=\int \sigma_{h}(v) d v
$$

- Suppose we have a narrowband laser beam with a frequency that we can tune

$$
\begin{aligned}
& W_{12}\left(v_{L}\right)=\frac{2 \pi^{2}}{3 n \varepsilon_{0} c h^{2}}\left|\mu_{12}\right|^{2} I g\left(v_{L}-v_{0}\right) \\
& \sigma_{h}\left(v_{L}\right)=\frac{W_{12}\left(v_{L}\right)}{F}=\frac{W_{12}\left(v_{L}\right)}{I / h v_{L}}=\frac{h v_{L}}{I} \frac{2 \pi^{2}}{3 n \varepsilon_{0} c h^{2}}\left|\mu_{12}\right|^{2} I g\left(v_{L}-v_{0}\right) \\
& \sigma_{h}\left(v_{L}\right)=\frac{2 \pi^{2}}{3 n \varepsilon_{0} c h}\left|\mu_{12}\right|^{2} v_{L} g\left(v_{L}-v_{0}\right)
\end{aligned}
$$

