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Full QM approach

* Next level up in accuracy in QM is to approximately solve
the Schrodinger equation in the presence of the incident
field

— QM representation of the electron wavefunction W(l',t)
— Classical representation of the EM field as a perturbation

ﬁz.,,:m%_‘/t’ A=0 + B
« Without external field: With external field (E-dipole):
I_Alol// %—l/: —~H WV, =EWvw, PAI'=,u-E=—er-E0sina)t

 Assume wavefunction with field can be written in terms of
a linear combination of wavefunctions without field

Za t)y, (r.) v, (rr)=u,(r)e

—E,t/h



Framing the QM calculation

« Time-dependent SE with external field

ﬁw:ih%—l/:
ihaa—l/tj = (ﬁo +PAI’)1// = (ﬁo —er-E, sina)t)l//

— Applied field is built into the calculation
— Dot product ensures r is along E

« Equation describes evolution of wavefunction
— Independent of initial state

— Absorption and stimulated emission are the same, only
initial state is different



Spontaneous emission and QED

What if there is no incident field?

If atom is in an excited state, it is in an unstable
equilibrium.

But the vacuum fluctuations of the EM field (QED)
“stimulate” emission spontaneously.

Concept leads to “cavity QED” experiments,
where an external cavity is used to shape/control
the background radiation spectrum to enhance or
suppress spontaneous emission.



Time-dependent perturbation theory

Easiest to concentrate on 2 levels
Assume input frequency is close to resonance:
~(E,—E,)/h=aw,
Assume weak probability of excitation:
a(r)=1, a,(r)<1
Put form of solution into time-dependent SE (with field)

Transition rate (in Hz) will be
d

dt

2

W, = ‘az ‘

Result: “Fermi’s Golden Rule §(v—v,) Dirac delta function

le(V):%lerEo%(V_vo) Jf V v dv f( )




Using Fermi’s golden rule

2
Fermi’s “Golden rule le(v):_2|u12|2E025(v—Vo)

— To get a rate, we must integrate over frequency

— Implicitly, the field? in this expression is connected to the spectral
energy density:

2 2

pv — %n EOEO

— This way we get a total transition rate by integrating over frequency
2T

3n’gh’
« Total rate is obtained by integrating over all frequency'

2m* 27
W12:J-3nn- |‘LL12|2pv5(V—VO)dV—3 8h2

—>W,(v)= 1) P, 8(v—v,)

|U12| pvo



Absorption with blackbody incident field
« Spectral energy density for blackbody:

8nv: hv
(C/ )3 hv/kgT —1

* Integration with the delta function assigns v —v,

Py =

2T 2T
12— 32 hz‘ﬂ12|2Pv5(V_vo)dV_3 8 h2|.u12| Py,
0
21’ > 8mv: hv
W, = 3n280h2 |;U12| ( /n)3 oMVIkT
— Check units:
e’ x’ X v’ hv 1 s

W . =
12 h2 80 X(C/ )3



Working with spectral lineshapes

* For atomic system, replace Dirac delta with transition
lineshape
jg(v—vo)dv =1

« Lorentzian lineshape (radiative, collisional broadening)

2 1
5(V—VO)%8L(V—VO):7TAV Y -
. _
AVO FWHM 1+( AVOO j

* Doppler broadened (Gaussian) lineshape

2
" 2 [In2 V-V
S(v—-v,)— g, (V_VO)ZAV* Iylr exp{—4ln2(Av fz) }
0 0




Lorentzian vs Gaussian lineshapes

* Lorentzian is much broader in spectral wings than
Gaussian
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Lorentzian lineshape

« Complex Lorentzian separated into Re and Im
1 _ Y : (w — (00)
, = T i s
y-ilo-0,) (0-0,)+y> (0-0,) +7
— Real part corresponds to absorption effects

* Normalize

YIT

14 T
do=cy—=1 —>g (l0-w,)=
CJ‘(a)_a)O)2+f}/2 Cj/y gL( O) (a)_wo)2+y2

e Convertwtov

14 |
dv=cy—-=1
CJ Aar*(v—v,) +7° oy
) . ) :
o2 L f2vmv)Y | 2 2(v—v,)
— g, (v VO)_y 1+[ T ] = av. 1+( Av,




Natural broadening

« Radiative broadening results directly from the
spontaneous emission lifetime of the state

 Fourier transforms
— Forward: FT F(w):J'_‘” f(t)eiwtdt

— Inverse: FT-! f(t):i :OF(w)e—ia)t do

« Suppose exponential, oscillating decay in time domain

-yt _—iWyt

N= €€ fort =0
f( ) 0 fort <0
_ | | (—y+i(w-w,))t
F(a)):J. e‘?’t—lwotelwtdtz e _ . 1
0 . y—z(a)—a)o)

—y+i(o-w,)
Complex Lorentzian




Fermi’s golden rule generalized

« To account for the transition lineshape:

27’

21
|nu12| pv ( ) >3n280h2‘:u21|2pvg(v_v0)

3n’gh’

Wi, (v)=

 Example: narrow linewidth laser incident on atom

pv ZEIB(V_VL)

C

 Total transition rate:




Cross sections

It is inconvenient to carry around all these constants and
to use the dipole moments
— Use values that connect to what we can measure

Consider a beam passing through a gas of atoms with
number density N, (atoms/unit volume)

. _ P
Power absorbed/unit volume: dVa — W, N hv
Photon flux (photons/area/sec) r—_L

hv
Power in beam: P=IA=hvFA

dF lldP__LdPa_
dz hv A dz hv dV

Evolution of flux: —W,,N,



Cross sections

Flux decreases as beam propagates in medium

dF
d_ =—-Wy,N,
%

. . . W
Define total absorption cross-section: o, = ?12

F
So that: i —NG,, = F(z)= Fe V"

dz

Physically, the cross-section is an effective area of the
atom. In a low density gas, the beam of photons sees a
collection of spheres:

d—F = —NtAdz&
F A



Frequency-dependent cross section

» Total cross section is obtained by integrating over
lineshape (h for homogeneous):

O, = ja )dv

e Suppose we have a narrowband laser beam with a
frequency that we can tune

21

WIZ(VL) 3ne, h2|.u12| Ig(v _V)
W, (v W, (v hv, 2w’
0,(.)= 12Ig . Il/zl(va): IL 3ne, h2|'u12| Lg(vi=v)
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