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Lecture: Heat Equation - Solution by Fourier Series Module: 14
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Beginning Quote of Lecture 14

The Mark Inside was coming up on him and that’s a heat nobody can cool.

William S. Burroughs : Naked Lunch (1959)

1. Introduction

The box-header implies we seek to only study the solutions of the heat equation but before this more that

needs to be done. It makes sense to begin with a physically motivated starting location and build up the

problem definition so that we know exactly what our equation models.1 After this we consider how we might

find solutions to the model equation and, more importantly, what these solutions mean for our model. If

we have done everything right then we can port much of this discussion over to the study of vibrations and

simple wave motion.

2. Conservation Laws

We begin the story with some sub-region Ω of R3, in which we are concerned about a quantity u that

is allowed to move freely through this sub-region. We take this quantity to be the temperature at some

space-time point (x, y, z, t) in Ω. 2 Now, within this region Ω we restrict our study to some ball B ⊂ Ω and

within this ball we now argue that:

• The total rate of change of heat energy inside the ball must be equal to the heat energy produced

inside the ball minus the heat energy that leaves the ball through its boundary.

This is a statement of conservation of energy and without this argument we wouldn’t even have an equation

to start with. In terms of mathematics the previous statement provides the following equation,

d

dt
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ρ c u(x, y, z, t) dV =
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f(x, y, z, t) dV −
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∂B

~φ(x, y, z, t) · n̂ dS, ρ, c ∈ R+(1)

where ρ, c are constants representing the density and heat-capacity of the homogeneous material and f is

a generic function meant to represent the rate of heat generation at any of the points in the ball. The vector

~φ is called the heat-flux vector and represents the direction and rate associated with the flow of heat energy

in the ball. In order to compare the integrands in the previous equation we make use of the divergence

theorem to convert the flux integral to a volume integral of the divergence of the vector field, div(~φ) = ~∇ · ~φ
and arrive at the global conservation law,
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ρ c ut − f + ~∇ · ~φ

i
dV = 0.(2)

We now argue that since the ball B was an arbitrary geometry and that this integral must hold regardless

of the geometry of B then it must hold point-wise and from this we conclude that the integrand itself must

be zero, which gives us the local conservation law,

ρ c ut − f + ~∇ · ~φ = 0.(3)

If we wish to work from either of these conservation laws we will immediately encounter a consistency

problem. That is, we have only one equation, the conservation law, but we have two unknown variables u

1It turns out that from this perspective the model equation is quite generic and can be be used for a wide variety

of physical phenomenon.
2Though we consider u to be a temperature it doesn’t have to be. In fact we only require u to be a density of

‘stuff.’ This stuff could be charge, particle, probability or just about anything else we are permitted to construct an

average of. In our case u is an average of the kinetic energy present at the some point (x, y, z, t) ∈ R3+1. For this

reason the conservation law here is also found in the study of particle diffusion and electromagnetic theory.

1



MATH348 - Advanced Engineering Mathematics 2

and ~φ.3 In order to deal with this we must appeal to a constitutive relation that relates the unknown density

u to its flux vector ~φ. Specific to this problem we ask the question:

• How does heat energy flow with respect to the local temperature?

The answer to this question comes from our good friend Joseph Fourier but is not the only constitutive

relation one can apply to our conservation law.

3. Constitutive Relations

A constitutive relation is an auxiliary equation used to close our system of equations, which at this time

stands at one equation with two unknowns. These relations are derived, typically, from empirical evidence

and vary depending on the physical context. 4 In our case we have what is known as Fourier’s law of heat

conduction:5

• The rate and direction of heat transfer is proportional the negative of the gradient of the temperature

field.

Mathematically we take this to mean,

~φ = −κ ~∇u,(4)

where κ ∈ R+ is a physical parameter associated with the thermal conductivity of the material. Using this

relation in our previous conservation law we have the following partial differential equation,

∂u

∂t
= α24u+ F (x, y, z, t),(5)

where α2 = κ/ρc, F = f/ρc and 4u is known as the Laplacian of u and in Cartesian coordinates is

4u = uxx + uyy + uzz. 6 This equation is called the heat or diffusion equation and models the flow of the

conserved density (temperature) in space-time subject to the empirically observation that the density flows

in down spatial gradients. This problem can take place in finite or infinite domains. Between these we will

concentrate on finite domains and recall that to move to an infinite domain would imply a movement from

Fourier series to Fourier transform/integral, which brings extra sophistication due to the more intensive

integrations.

4. Half-Range Expansions and Finite-Domains

We wish to study the time-dynamics of temperature in an object, which is allowed to experience only

lateral heat flow and no internal sources of heat energy. Mathematically, this will take place in one-spatial

dimension and one-temporal dimension, which implies we use the model equation,

∂u

∂t
= c2

∂2u

∂x2
, c2 ∈ R2.(6)

This equation will control the time dynamics of the temperature of the object. If we take it to be L-units

long then we say x ∈ (0, L) and generally t ∈ (0,∞). However, this is not the entire story. We must

specify how this object is to interact with the rest of its environment. These conditions are called boundary

conditions and for this problem we specify,

u(0, t) = 0, u(L, t) = 0,(7)

3The parameters ρ and c would be prescribed, or guessed on, at the start of the problem. The same is true for the

source function f .
4A more systematic way of doing this is given to us by the Clausius-Duhem inequality of continuum mechanics,

which is a re-expression of the second law of thermodynamics that allows one to derive constitutive relations among

the processes important quantities.
5In the study of diffusion this is also known as Fick’s first law and relates the diffusive flux to the concentration

field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a

magnitude that is proportional to the concentration gradient (spatial derivative).
6It is important to note that application of the multivariate chain rule is required to take this differential operator

into other coordinate systems. Some important cases are:

• Polar :urr + r−1ur + r−2uθθ + uzz

• Spherical : urr + 2r−1urr + r−2uθθ + (r2 sin2(θ))−1uφφ + cot(θ)r−1uθ

In each of these equations the process of solving the associated PDE requires the use of Power-Series.
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and take this to mean that the temperature at both endpoints is fixed to be zero for all time.7 This implies

that the object itself is situated in some sort of heat bath that can take any amount of heat energy from

these contact points instantly. 8 Lastly, we need to describe how the temperature is configured initially.

Since, we have a first order in time problem we a required to specify only one initial condition,

u(x, 0) = f(x).(8)

These three statements constitute a well-posed problem and with them we can write down both a general

solution to the problem (6)-(7) as well as a solution to this initial value problem (6)-(8).

We solve this problem using a three part process. This is outlined in class and homework solutions so I

will only present an overview here and state what the general conclusions are. The process will require:

• Separation of Variables : Assume that u(x, t) = F (x)G(t) and using this reduce (6) to two ODEs

one on time and one on space.

G′(t) + λc2G(t) = 0(9)

F ′′(x) + λF (x) = 0(10)

The spatial equation is known as a boundary value problem (BVP) and is new to most of us. There

will be infinitely many solutions to this problem and these solutions are nothing more than modes

of a Fourier series expansion of u.

• Solve ODEs : If we solve the time and space ODE’s we find that,

Gn(t) = Bne
−λnc

2t, where Bn ∈ R, λn =
n2π2

L2
, n = 1, 2, 3, . . . ,(11)

Fn(x) = sin(
√
λnx),

√
λn =

nπ

L
, n = 1, 2, 3, . . .(12)

• Form the solution to the IVP via superpostion to get,

u(x, t) =

∞X
n=1

Bn sin(
√
λnx)e−λnc

2t,(13)

where u(x, 0) = f(x) implies that Bn =
2

L

Z L

0

f(x) sin(
√
λnx)dx.

The take home message here is that though the BVP was weird it really just gave us the spatial terms

in a Fourier series, which we could have guessed at from the start. Since we are talking about a function

defined on a finite spatial domain it makes sense to assume that there is a Fourier series representation for

this function. Moreover, since the left boundary condition requires the function pass through the origin

we can expect a Fourier sine series for this function. That is we can guess that the solution should look

something like,

u(x, t) =

∞X
n=1

Bn sin
“nπ
L
x
”
Gn(t),(14)

where Gn is some function we suppose controls the time dynamics of each Fourier mode. If we substitute

this back into the PDE then we arrive at,

∞X
n=1

Bn sin
“nπ
L
x
”
G′n(t) = −c2

∞X
n=1

Bn
“nπ
L

”2

sin
“nπ
L
x
”
Gn(t).(15)

If we equate terms on the left and terms on the right then we can conclude Gn must satisfy the ODE,

G′n(t) = −c2
“nπ
L

”2

Gn(t),(16)

and we can conclude the same solution as above and we didn’t really have to deal with the BVP. All we

have to use is the heady but fair assumption of periodic extension.

7If we instead specified the boundary conditions, ux(0, t) = ux(L, t) = 0, we would imply from Fourier’s law of

heat conduction that the heat-flux at the endpoints is zero for all time. This implies that no heat-energy can leave

this object and it is perfectly insulated from its environment. Both of these cases are quite ideal and maybe we wish

to specify that ux(0, t) ∝ u(0, t). This mixed condition implies that the insulation is proportional to the temperature

and though it is more realistic it leads to problems that cannot be solved by hand. :(
8Maybe we want to think that there are huge heat-sinks at both ends that just wick heat energy away from the

object and are never outside of their operational parameters.
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5. Lecture Goals

Our goals with this material will be:

• Understand what is meant by a conservation law and constitutive relation.

• Understand what the heat/diffusion equation models and how one can solve it using the periodic

extension of a function defined on a finite domain. 9

6. Lecture Objectives

The objectives of these lessons will be:

• Derive the heat equation from conservation of energy and Fourier’s law of heat conduction.

• Construct solutions to the heat equation on a finite domain through the use of Fourier half-range

expansions, which are found via separation of variables and ODE methods.

End Quote of Lecture 14

Hustlers of the world, there is one Mark you cannot beat - the Mark Inside.

William S. Burroughs : Naked Lunch (1959)

9This really is the deepest concept in this course. If we consider the BVP then we find ourselves solving an

eigenvalue/eigenvector problem, which has an infinite amount of each. Then since the problem is linear an arbitrary

linear combination of solutions is also a solution and we have exploited everything from ODE’s and linear algebra to

solve the problem. The solution itself is a Fourier series, which we could have guess straight out of the gates using

some geometry and the concept of periodic extension, and thus we can solve for all of the unknown coefficients in

terms of Fourier coefficients!


