- 1) Svelto problem 2.12
- 2) A more general derivation of the saturation in a two level system. In this version, we have pump rates (/vol/time) R_1 and R_2 , and overall lifetimes out of the levels τ_1 and τ_2 . We also include the effect of degeneracies on levels 1 and 2, g_1 and g_2 . We'll work with the beam intensity and the cross-section rather than the pump

rate
$$W = \frac{I\sigma_{21}}{hv_L}$$
. With these included, the rate equations are

$$\frac{dN_2}{dt} = R_2 - \Delta N^* \sigma_{21} \frac{I}{hv_L} - \frac{N_2}{\tau_2}$$

$$\frac{dN_1}{dt} = R_1 + \Delta N^* \sigma_{21} \frac{I}{hv_L} - \frac{N_1}{\tau_1} + N_2 A_{21}$$

where

$$\Delta N^* = N_2 - \frac{g_2}{g_1} N_1$$

is the population inversion density. Remember that in this formulation, spontaneous emission out of level 2 is included in the lifetime in that level, τ_2 .

a. First set the time derivatives = 0 for steady state, then calculate the steady state expressions for N_1^{ss} and N_2^{ss} . Then calculate the steady-state value of ΔN^* , to show that

$$\Delta N^{*}(I) = N_{2}^{ss} - \frac{g_{2}}{g_{1}}N_{1}^{ss} = \frac{R_{2}\tau_{2}\left[1 - (g_{2}/g_{1})A_{21}\tau_{1}\right] - (g_{2}/g_{1})R_{1}\tau_{1}}{1 + \sigma_{21}I\frac{1}{hv_{L}}\left[\tau_{2} + (g_{2}/g_{1})\tau_{1} - (g_{2}/g_{1})A_{21}\tau_{1}\tau_{2}\right]}$$

b. This equation can be written in the standard form

 $\Delta N^*(I) = \frac{\Delta N^*(0)}{1 + I/I_s}, \text{ with the saturation intensity } I_s = \frac{hv_L}{\sigma_{21}\tau_R}.$

Write expressions for $\Delta N^*(0)$ and the "recovery time" τ_R and give a description of what each of those terms mean physically.

3) A laser-pumped amplifier has an inversion density distribution $\Delta N(r,z) = N_0 \exp\left[-2r^2 / w_p^2 - \alpha z\right]$

a. If the total stored energy is E_{stor} , the crystal length is L, and the photon energy is hv_L , calculate an expression for N_0 .

b. Let $E_0 = 50 \text{ mJ}$, L = 1 cm, $w_p = 2 \text{ mm}$, and $\alpha = 3/\text{cm}$. Calculate N_0 in cm⁻³.

c. The single-pass gain in the amplifier is given by $\begin{bmatrix} L \end{bmatrix}$

$$G(r) = \exp\left[\sigma_{21}\int_{0}^{L}\Delta N(r,z)dz\right] = \exp\left[\Gamma_{stor}(r)/\Gamma_{s}\right], \text{ where } \Gamma_{stor}(r) \text{ is the stored energy}$$

fluence and $\Gamma_{s} = hv_{L}/\sigma_{21}$ is the saturation fluence. Calculate $\Gamma_{stor}(r)$. What

parameters does the stored fluence depend on?

d. If our input seed pulse has an energy of E_0 , the input energy fluence is $\Gamma(r) = \Gamma_0 \exp\left[-2r^2 / w_L^2\right]$, with Γ_0 so that integrating over the beam area gives E_0 . On one graph, plot the output energy fluence for $w_L = 5$ mm and for $w_L = 1$ mm along with the input fluence. To see how the beam is reshaped by the gain, normalize each curve so that the peak is = 1.