classical response model: SHG

A medium that has a linear reponse has a quadratic form of the potential.
examples: $a\left(x^{2}+y^{2}\right),\left(a_{x} x^{2}+a_{y} y^{2}\right),\left(a_{x} x^{2}+a_{y} y^{2}+a_{x y} x y\right)$
The second two cases would correspond to a birefringent medium.
We need to add a higher-order term to the potential to get a NL response. Start with a potential that has a cross-term:
$\left(a_{x} x^{2}+a_{y} y^{2}+a_{x y} x y^{2}\right)$
This might look like the plot below:
ContourPlot $\left[x^{2}+y^{2}-x y^{2},\{x,-1,1\},\{y,-1,1\}\right.$, Contours $\left.\rightarrow 20\right]$

If you look along the x or y axes, the potential is still harmonic. To see a nonlinear reponse in this potential, you have to look off-axis.

$$
\operatorname{Plot}\left[x^{2}+y^{2}-x y^{2} / \cdot y \rightarrow x,\{x,-1,1\}\right]
$$

The equations of motion for a bound electron in this medium would look like:
$F=-\nabla\left(a_{x} x^{2}+a_{y} y^{2}+a_{x y} x y^{2}\right)$
without a driving force, we have:
$m \ddot{x}=-2 y \dot{x}-2 a_{x} x-a_{x y} y^{2}$ where we are adding a damping term
$\ddot{x}+2 y \dot{x}+2 a_{x} x+a_{x y} y^{2}=0$
$\ddot{y}+2 y \dot{y}+2 a_{y} x+2 a_{x y} x y=0$
Add a driving field. As noted above, we won't get cross terms (i.e. NL source in a direction orthogonal to the driving field) unless the driving field has both x and y components. We will stick to linearly polarized fields for simplicity and because the medium is birefringent, so elliptically polarized light wouldn't stay so.

$$
\begin{aligned}
& \ddot{x}+2 y \dot{x}+2 a_{x} x+a_{x y} y^{2}=-\frac{e}{m} E_{x}(t) \\
& \ddot{y}+2 y \dot{y}+2 a_{y} y+2 a_{x y} x y=-\frac{e}{m} E_{y}(t)
\end{aligned}
$$

Apply perturbative approach to the solution:

$$
\begin{aligned}
& x(t)=\lambda x^{(1)}+\lambda^{2} x^{(2)}+\lambda^{3} x^{(3)} \cdots \\
& y(t)=\lambda y^{(1)}+\lambda^{2} y^{(2)}+\lambda^{3} y^{(3)} \cdots
\end{aligned}
$$

and treat the driving field as a first-order

Lowest order equation:
$\ddot{x}^{(1)}+2 \gamma \dot{x}^{(1)}+2 a_{x} x^{(1)}=-\frac{e}{m} E_{x 0} e^{i \omega_{0} t}$
$\dot{y}^{(1)}+2 \gamma \dot{y}^{(1)}+2 a_{y} y^{(1)}=-\frac{e}{m} E_{y 0} e^{i \omega_{0} t}$
next order:
$\ddot{x}^{(2)}+2 \gamma \dot{x}^{(2)}+2 a_{x} x^{(2)}+a_{x y}\left(y^{(1)}\right)^{2}=0$
$\dot{y}^{(2)}+2 \gamma \dot{y}^{(2)}+2 a_{y} y^{(2)}+2 a_{x y} x^{(1)} y^{(1)}=0$
So it seems that if we drive hard in only the y direction, we can generate SH in the x direction. Looking at the potential plot, you can see the slope in the contours along the y-axis.

```
\omega0 = 6;
\omega=1;
Tlaser = 2\pi/\omega;
\gamma = 0.1;
c= . 5;
tMax = 100;
axy = - 0.01;
```

solution $=$ NDSolve $[\{$
$x^{\prime} '[t]+2 \gamma x x^{\prime}[t]+\omega 0^{2} x[t]+\operatorname{axy} y[t]^{2}=0$,
$y^{\prime \prime}[t]+2 \gamma y^{\prime}[t]+\omega 0^{2} y[t]+2 \times 0 \operatorname{axy} x[t] y[t]=-\mathbf{c} \operatorname{Cos}[\omega t]$,
$\mathbf{x}[0]=0, x^{\prime}[0]=0$,
$\left.y[0]=0, y^{\prime}[0]==0\right\},\{x, y\},\{t, 0$, tMax $\}$, MaxSteps $\left.\rightarrow 10^{6}\right]$
xNL[t_] $=x[t] /$. solution $\mathbb{1}, 1]$;
yNL[t_] = y[t] /.solution【1, 2】;

ParametricPlot [\{yNL[t], xNL[t]\}, $\{t, 60,70\}$, AspectRatio \rightarrow. 1]

