
2-25. 

a) At A, the forces on the ball are: 

   

The track counters the gravitational force and provides centripetal acceleration 

  2N mg mv R   

Get v by conservation of energy: 

  0top top topE T U mgh     
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  2top AE E v gh    

So 

  2N mg m gh R   
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b) At B the forces are: 
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Get v by conservation of energy. From a), totalE mgh . 

At B, 21
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So total B BE T U   becomes: 
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Solving for 2v  
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Substituting into (1): 
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c) From b) 2 2 2Bv g h R R      

   
1 2

2 2v g h R R   
 

 

d) This is a projectile motion problem 

   

Put the origin at A. 

The equations: 

  0 0xx x v t   
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become 
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Solve (3) for t when y = 0 (ball lands). 

  2 2 2 0Bgt v t h    
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We discard the negative root since it gives a negative time. Substituting into (2): 
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Using the previous expressions for Bv  and h yields 
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e) ( ) ( )U x mgy x , with (0)y h , so ( )U x  has the shape of the track. 

2-28.  

   

The problem, as stated, is completely one-dimensional. We may therefore use the elementary 
result obtained from the use of our conservation theorems: energy (since the collision is elastic) 
and momentum. We can factor the momentum conservation equation 

  1 1 2 2 1 3 2 4m v m v m v m v    (1) 

out of the energy conservation equation 

  2 2 2 2
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and get 

  1 3 2 4v v v v    (3) 

This is the “conservation” of relative velocities that motivates the definition of the coefficient of 
restitution. In this problem, we initially have the superball of mass M coming up from the 

ground with velocity 2v gh , while the marble of mass m is falling at the same velocity. 

Conservation of momentum gives 

    3 4Mv m v Mv mv     (4) 

and our result for elastic collisions in one dimension gives 

  3 4( )v v v v     (5) 

solving for 3v  and 4v  and setting them equal to 2 itemgh , we obtain 
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where m M  . Note that if 1 3  , the superball will bounce on the floor a second time after 

the collision. 

2-42.  

   

From the figure, we have ( ) ( 2) cos sinh R b R      , and the potential is ( ) ( )U mgh  . 

Now compute: 
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The equilibrium point (where 0dU d  ) that we wish to look at is clearly  = 0. At that point, 

we have  2 2 2d U d mg R b   , which is stable for 2R b  and unstable for 2R b  . We can 

use the results of Problem 2-46 to obtain stability for the case 2R b , where we will find that 

the first non-trivial result is in fourth order and is negative. We therefore have an equilibrium at 

 = 0 which is stable for 2R b  and unstable for 2R b . 

 


