2-25.

a) At A, the forces on the ball are:

The track counters the gravitational force and provides centripetal acceleration

Get v by conservation of energy:

So

b) At B the forces are:

mg
N —mg =mov*/R

E

top

=T

op T Uiy =0+ mgh
L
EA:TA+UA:§mv +0

E

top

=E, »>v=,2gh

N =mg +m2gh/R

N=mg[1+%j

455
mg

N =mv*/R+mg cos 45°

=mv* /R +mg/\2

Get v by conservation of energy. From a), E,,,,, = mgh.

At B, E:%mzf +mgh’
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So E,,, =T; +U, becomes:

total
Solving for v*

Substituting into (1):

vl

c) Fromb) v} = 2g[h—R+R/«/§]

U= [2g(h—R+R/\/§)]l/2

d) This is a projectile motion problem

Put the origin at A.

The equations:
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Solve (3) for t when y = 0 (ball lands).
gt* =2 vt —2h" =0

V2 v, £ 205 +8gh’
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We discard the negative root since it gives a negative time. Substituting into (2):

()

(3)



2g

R v, [\/EUB +,/20;, +8gh']

Using the previous expressions for v, and /' yields

1/2

x:(\/E—l)R+h+[h2—%R2+«/§R2}

e) U(x)=mgy(x), with y(0)=h, so U(x) has the shape of the track.

2-28.

-,

v Uy
M
before after
collision collision

The problem, as stated, is completely one-dimensional. We may therefore use the elementary
result obtained from the use of our conservation theorems: energy (since the collision is elastic)
and momentum. We can factor the momentum conservation equation

Mo, + 1,0, =105 + 1,0, 1)
out of the energy conservation equation

1 1 1 1
E mlvl2 + E mzv§ = E mlv§ + 5 mzvi 2)

and get
U, ¥, =0, +0, 3)

This is the “conservation” of relative velocities that motivates the definition of the coefficient of
restitution. In this problem, we initially have the superball of mass M coming up from the

ground with velocity v=,/2¢h , while the marble of mass m is falling at the same velocity.

Conservation of momentum gives
Muv +m(-v) = Mo, + mo, (4)
and our result for elastic collisions in one dimension gives
v+, =(-0)+7, 5)

solving for v, and v, and setting them equal to /2¢h,,, , we obtain

item 7



hmarble :[3_a:| h (6)
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(7)

where a=m/M . Note that if a <1/3, the superball will bounce on the floor a second time after
the collision.

2-42.

From the figure, we have h(6)=(R+b/2)cos 6+ Résin 8, and the potential is U(6) = mgh(6).
Now compute:

d—uzmg[—E sin 0+ RO cos 0} (1)
dae 2

2

ZQLZ[ - mg|:(R—gj cos - ROsin 0} 2)

The equilibrium point (where dU/d@=0) that we wish to look at is clearly 8= 0. At that point,
we have d°U/d6” = mg(R-b/2), which is stable for R >b/2 and unstable for R <b/2. We can
use the results of Problem 2-46 to obtain stability for the case R=0b/2, where we will find that

the first non-trivial result is in fourth order and is negative. We therefore have an equilibrium at
0= 0 which is stable for R >b/2 and unstable for R<b/2.



