
MATH332-Linear Algebra Homework Five Solutions

Eigenproblems, Diagonalization and Applications

Text: 5.1-5.3, 5.5 Section Overviews: 5.1-5.3, 5.5

Quote of Homework Five Solutions

Limber Up

Zombieland : Rule #18 (2009)

1. Eigenvalues and Eigenvectors

A1 =

 4 0 1

−2 1 0

−2 0 1

 , A2 =

[
3 1

−2 1

]
, A3 =


4 0 0 0

0 4 0 0

0 0 2 0

1 0 0 2

 , A4 =

[
.1 .6

.9 .4

]
, A5 =

[
0 −i
i 0

]
,

1.1. Eigenproblems. Find all eigenvalues and eigenvectors of Ai for i = 1, 2, 3, 4, 5.

Recall that the associated eigenproblem for a square matrix An×n is defined by Ax = λx whose solution is found via the following

auxiliary equations:

• Characteristic Polynomial : det(A− λI) = 0

• Associated Null-space : (A− λI)x = 0

For each of the previous matrices we have:

det(A1 − λI) = (4− λ)(1− λ)2 + 2(1− λ)

= (1− λ)(λ2 − 5λ+ 6) = 0 =⇒ λ1 = 1, λ2 = 2, λ3 = 3

Case λ1 = 1:

[
A1 − λ1I 0

]
=

 3 0 1 0

−2 0 0 0

−2 0 0 0

 ∼
 3 0 1 0

−2 0 0 0

0 0 0 0

⇒ 3x1 = −x3
−2x1 = 0

x2 ∈ R
⇒ x =

 0

x2

0

 = x2

 0

1

0



A basis for this eigenspace associated with λ = 1 is Bλ=1 =


 0

1

0




Case λ2 = 2:

[
A1 − λ2I 0

]
=

 2 0 1 0

−2 −1 0 0

−2 0 −1 0

 ∼
 2 0 1 0

−2 −1 0 0

0 0 0 0

 ∼

∼

 2 0 1 0

0 −1 1 0

0 0 0 0

⇒ x1 = −x3/2
x2 = x3

x3 ∈ R
⇒ x =

 −1/2

1

1

x3
1
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A basis for this eigenspace is Bλ=2 =


 −1

2

2




Case λ3 = 3:

[
A1 − λ3I 0

]
=

 1 0 1 0

−2 −2 0 0

−2 0 −2 0

 ∼
 1 0 1 0

0 −2 2 0

0 0 0 0

⇒

⇒
x1 = −x3
x2 = x3

x3 ∈ R
⇒ x =

 −1

1

1

x3

A basis for this eigenspace is Bλ=3 =


 −1

1

1


.

det(A2 − λI) = (3− λ)(1− λ)− (−2) = λ2 − 4λ+ 5 =⇒ λ =
−(−4)±

√
16− 4(1)(5)

2
= 2± i

Case λ = 2± i:

[
A2 − λI 0

]
=

[
3− (2± i) 1 0

−2 1− (2± i) 0

]
=

=

[
1∓ i 1 0

−2 −1∓ i 0

]
.

Row-reduction with complex numbers is possible. However, it is easier to note that for a two-by-two system we can use either row, in this

case the first,

(1∓ i)x1 + 1x2 = 0 ⇐⇒ (1∓ i)x1 = −x2,(1)

to define the ratio between x1 and x2.1 That is, if x1 = −1 then x2 = 1∓ i and thus the eigenvectors, like the eigenvalues, come in complex

conjugate pairs x = [−1 1∓ i]t.2

Since A3 is triangular we know the eigenvalues ofA3 are,

λ1 = 4 (With algebraic multiplicity of 2),

λ2 = 2 (With algebraic multiplicity of 2).

Case λ1 = 4:

[
A3 − λ1I 0

]
=


0 0 0 0 0

0 0 0 0 0

0 0 −2 0 0

1 0 0 −2 0

⇒
−2x3 = 0

x1 = 2x4

x2, x4 ∈ R
⇒ x =


2x4

x2

0

x4

 = x2


0

1

0

0

+ x4


2

0

0

1



Thus the basis for this eigenspace is Bλ=4 =




0

1

0

0

 ,


2

0

0

1


.

1This only works for two-by-two problems. In higher dimensions it is not possible to fix one variable and uniquely define the remaining variables.
2For real matrices, complex Eigenvalues and eigenvectors must occur in conjugate pairs.
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Case λ = 2:

[
A3 − λ2I 0

]
=


2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

1 0 0 0 0

⇒
x1 = 0

x2 = 0

x3, x4 ∈ R
⇒ x =


0

0

x3

x4

 = x3


0

0

1

0

+ x4


0

0

0

1



A basis for this eigenspace is Bλ=2 =




0

0

1

0

 ,


0

0

0

1




det

([
.1− λ .6

.9 .4− λ

])
= (.4− λ)(.1− λ)− .54 = λ2 − .5λ− .54 + .04 =

= λ2 − .5λ− .5⇒ λ =
−(−.5)±

√
(−.5)2 − 4(1)(−.5)

2(1)
=
.5± 1.5

2
⇒ λ1 = 1, λ2 = −.5

Case λ1 = 1:

[A4 − λ1I|0] =

[
−.9 .6 0

.9 .6 0

]
∼

[
−.9 .6 0

0 0 0

]
=⇒ x1 =

[
2/5

3/5

]
(2)

Case λ2 = −.5:

[A4 − λ2I|0] =

[
.6 .6 0

.9 .9 0

]
∼

[
.6 .6 0

0 0 0

]
=⇒ x2 =

[
1

−1

]
(3)

det(A5 − λI) = λ2 − 1 = 0 =⇒ λ = ±1(4)

Case λ = ±1:

[A5 − λI|0] =

[
∓1 −i 0

i ∓1 0

]
=⇒ ∓x1 − ix2 = 0 ⇐⇒ ∓x1 = ix2 =⇒ x =

[
i

∓1

]
(5)

2. Applications of Diagonalization

2.1. Eigenbasis and Decoupled Linear Systems. Find the diagonal matrix Di and vector Ỹ that completely decouples the system of

linear differential equations
dYi

dt
= AiYi for i = 3, 4, 5.

If one finds n−many eigenvectors for an n × n matrix then it is possible to find a diagonal matrix similar to An×n. That is, if A has

n−many eigenvectors then A has the following diagonal decomposition,

A = PDP−1,(6)

where D is a diagonal matrix whose elements are eigenvalues of A and P is an invertible matrix whose columns are the eigenvectors

corresponding to the eigenvalue elements of D. This sort of decomposition is important because if we recall the coordinate changes

described in 02.LS.Geometry in Rn then we can see that the eigenvector matrix defines a coordinate change for a given linear problem,

dYi

dt
= AiYi = PiDiP

−1
i Yi ⇐⇒

dP−1
i Yi

dt
= DiP

−1
i Yi =⇒ dỸi

dt
= DiỸi,(7)

http://en.wikipedia.org/wiki/Similar_matrix
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where Ỹi = P−1
i Yi for i = 1, 2, 3, 4, 5. We then say that Ỹi is the coordinates of Yi relative to the eigenvector basis. What is interesting

is that the problem, under this coordinate system, has become,

dỸi

dt
= DiỸi ⇐⇒

d

dt



ỹ1

ỹ2

ỹ3
...

ỹn


=



d11 0 0 · · · 0

0 d22 0 · · · 0

0 0 d33 · · · 0
...

...
...

. . .
...

0 0 0 · · · dnn





ỹ1

ỹ2

ỹ3
...

ỹn


,(8)

which is completely decoupled and therefore solvable without any row-reduction or eigen-methods. For each of the systems i = 3, 4, 5 we

have the following:

[P3|I] ∼


1 0 0 0 0 1 0 0

0 1 0 0 1/2 0 0 0

0 0 1 0 0 0 1 0

0 0 0 1 1/2 0 0 1

 =
[
I|P−1

3

]
=⇒ Ỹ = P−1

3 Y =


y2

.5y1

y3

.5y1 + y4

 , and D3 =


4 0 0 0

0 4 0 0

0 0 2 0

0 0 0 2

(9)

P4 =

[
2/5 1

3/5 −1

]
=⇒ P−1

4 =

[
1 1

3/5 −2/5

]
, and D4 =

[
1 0

0 −1/2

]
(10)

P5 =

[
i i

−1 1

]
=⇒ P−1

5 =
1

2i

[
1 −i
1 i

]
=
i

2

[
−1 i

−1 −i

]
=

1

2

[
−i −1

−i 1

]
, and D5 =

[
1 0

0 −1

]
(11)

2.2. Regular Stochastic Matrices. For the regular stochastic matrix A4, define its associated steady-state vector, q, to be such that

A4q = q. Show that q = [2/5 3/5]t.

2.3. Limits of Time Series. Show that lim
n→∞

An
4x = q where x ∈ R2 such that x1 + x2 = 1.

First, we note that we have already found the steady-state vector q since it is the eigenvector associated with λ1 = 1. Now, the question

is how to raise a matrix to an infinite power. Generally, it is unclear whether this processes converges and if it does, what it converges to.

However, diagonalization offers us hope since,

lim
n→∞

An = lim
n→∞

PDnP−1 = P lim
n→∞

DnP−1,(12)

where [Dn]ij = d2iiδij . Though calculating An is hard, calculating Dn is easy and more importantly, limiting processes on matrices now

reduce to limiting processes on scalars, which is well-understood. In this case we have,

lim
n→∞

An
4x = lim

n→∞
P4D

n
4P
−1
4 x =

[
2/5 1

3/5 −1

] lim
n→∞

1n 0

0 lim
n→∞

(−.5)n

[ 1 1

3/5 −2/5

][
x1

x2

]
(13)

=

[
.4 .4

.6 .6

][
x1

x2

]
=

[
.4(x1 + x2)

.6(x1 + x2)

]
=

[
.4

.6

]
=

[
2/5

3/5

]
= q.(14)

3. Theoretical Results

3.1. Spectrum of Self-Adjoint Matrices. Show that if A = Ah then σ(A) ⊂ R.
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Proof: Define q = x̄tAx and note that q ∈ C. We want to show that q̄ = q, which impiles that q ∈ R.

q̄ = ¯¯tAxx(15)

= ¯̄xtĀx̄(16)

= xtĀx̄(17)

= (x̄tĀ
t
x)t(18)

= (x̄tAhx)t(19)

= (x̄tAx)t(20)

= qt = q(21)

Hence, q is real. Now suppose that x is an eigenvector of A to get,

q = x̄tAx(22)

= x̄tλx(23)

= λx̄tx(24)

= λ

n∑
i=1

x̄ixi,(25)

but x̄ixi = (αi − iβi)(αi + iβi) = α2 + β2 ∈ R implies that the summation is real. Since q is real the summation multiplied onto λ must be

real. Thus, λ is real, which completes the proof.

3.2. Connection to Invertible Matrices. Show that if A is both diagonalizable and invertible then so is A−1.

If A is invertible then λ 6= 0, thus D associated with A = PDP−1 has a pivot in every column and is therefore invertible. Thus,

A−1 = PD−1P−1 exists.

3.3. Connection to Transposition. Show that if A has n−many linearly independent eigenvectors then so does At.

If A has n−many linearly independent eigenvectors then A = PDP−1 and by transposition we have At = (P−1)tDtPt = QDQ−1

where Q = (P−1)t. Thus At has a diagonalization, which impiles it has n−many linearly independent eigenvectors.

4. A Taste of Things to Come

Of the previous matrices only one of them has a direct relation to its Hermitian-adjoint. Recall, that in homework 2 we found that

Ah
5 = Ā

t
5 = A5 and that we called a matrix with this property self-adjoint. The following set of problems shows exactly how nice self-adjoint

matrices are.

4.1. Dot-Products Redux. Recall that if x,y ∈ R2 then we define their dot-product as x · y = x1y1 + x2y2 ∈ R and that this gave us

some information about the angle between the two vectors. This formula is the same as the matrix-product x · y = xty but if you apply it

to the eigenvectors from A5 it will return non-sensible results. 3 The problem is that the vectors are not from R2 but are from C2. This

problem is resolved by the Hermitian-adjoint. That is, whenever vectors are from C2 the dot-product is defined by, x · y = xhy, which

returns sensible results.4 5 With that said, show that the eigenvectors for A5 are orthogonal.

Vectors are orthogonal if their inner-product is zero. With our previous definition of inner-product, the calculation,

xh
∓x± = [̄i ∓ 1]

[
i

∓1

]
= [−i ± 1]

[
i

∓1

]
= −i · i+∓1 · ±1 = 1− 1 = 0,(26)

shows that the eigenvectors are orthogonal.

3If you want to, try it! Consider x1 · x1 = xt
1x1 = 0 seems to imply that the vector has no length. This is a problem.

4From this you will find that x1 · x1 = xh
1x1 = 2, which implies that the length of the vector is

√
2. This makes more sense since we can think of

this vector as pointing one-unit in both the real and imaginary directions, which creates a 1, 1,
√

2 triangle.
5This might seem crazy but it is comforting to note that if the vectors are real then xh = xt so this is merely and abstraction for complex number

systems.
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4.2. Orthonormality. Using this definition of dot-product scale both eigenvectors to be unit length.

An orthonormal basis is an orthogonal basis where the basis vectors have all been scaled to have unit-length. Using our definition of

inner-product to define a length we note, √
xh
∓x∓ =

√
1 + 1 =

√
2,(27)

which implies that the normalized eigenvectors are, x∓ = [i
√

2/2 ∓
√

2/2]t.

4.3. Unitarity. Using the normalized eigenvectors construct the matrix U = [x̂1 x̂2] and show that UhU = I.

Recall that [UhU]ij = ¯̂
ixx̂j for i = 1, 2 and j = 1, 2, thus by the previous inner-products we have the identity matrix.

4.4. Orthogonal Diagonalization. It will later be shown that if a matrix is self-adjoint then it always provides enough eigenvectors for

diagonalization and that these vectors can be chosen to be orthonormal. Moreover, a square matrix with orthonormal columns is called

unitary and will always satisfy the property from the previous subsection. This effectively removes the need for inverse computations. Show

this for our special matrix by verifying that A5 = UDUh.

We have seen from the previous problems that if you have enough eigenvectors then it is possible to find a diagonal decomposition for the

matrix. Geometrically, this decomposition provides a natural coordinate system for which the solution to the associated linear problem is

manifestly clear. This is a powerful result but it can be made stronger.

The general statement is,

• If a matrix is self-adjoint then it can always be diagonalized.6 Moreover, eigenvectors associated with different eigenvalues are

orthogonal to one another and the resulting matrix can be constructed to have the property PPh = PhP = I.7

Since A5 is self-adjoint we an demonstrate this fact.

U =

[
i
√

2
2

i
√
2

2

−
√
2

2

√
2

2

]
=⇒ Uh =

[
−i
√
2
2
−
√
2

2

−i
√
2
2

√
2

2

]
and UUh =

[
1
2

+ 1
2

0

0 1
2

+ 1
2

]
.(28)

Thus, A5 = UD5U
h where the decomposition has been found without using row-reduction to find an inverse matrix!

4.5. Spectral Representation. This sort of decomposition has many applications and one is the so-called spectral representation of

self-adjoint matrices. Show that A5 = λ1x̂1x̂
h
1 + λ2x̂2x̂

h
2.

The previous result is quite powerful and can be used to derive other decompositions of the matrix A5. One such decomposition is called

the spectral decomposition, which speaks to the action of A5 as a transformation. Assuming the given decomposition we consider the

transformation,

A5y =
(
λ1x1x

h
1 + λ2x2x

h
2

)
y(29)

= λ1x1x
h
1y + λ2x2x

h
2y(30)

= λ1 〈x1,y〉x1 + λ2 〈x2,y〉x2(31)

6It can also be shown that its eigenvalues are always real. This is important to the theory of quantum mechanics where the eigenvalues are

hypothetical measurements associated with a quantum system. It would be disconcerting if you stuck a thermometer into a quantum-turkey and it

somehow read 3 + 2i. Yikes!
7If the eigenvectors from a shared eigenspace are not orthogonal then it is possible to orthogonalize them by the Gram-Schmidt process.

http://en.wikipedia.org/wiki/Gram-Schmidt_process
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which implies that A5 transforms the vector y by projecting this vector onto each eigenvector, rescaling it by a factor of λi and then linearly

combines the results. To demonstrate this decomposition we calculate the following outer-product,

x∓x
h
∓ =

[
i
√

2
2

∓
√
2

2

] [̄
i
√

2/2 ∓
√

2/2
]

(32)

=

[
i
√
2

2

∓
√
2

2

] [
−i
√

2/2 ∓
√

2/2
]

(33)

=

[
1/2 ∓i/2
±i/2 1/2

]
,(34)

which gives,

A5 = 1 ·

[
1/2 −i/2
i/2 1/2

]
− 1 ·

[
1/2 i/2

−i/2 1/2

]
=

[
0 −i
i 0

]
.(35)

5. Lecture Appreciation

In lecture we considered the following applications of linear algebra:

• Ridged geometric preserving transformations of Rn as it relates to ridged body and fluid dynamics.

• Normal mode analysis of vibrational systems.

• Numerical approximation of solutions to partial differential equations.

• General solutions to constant linear ordinary differential equations.

• Quantum bits, Lie structures and the vector-space C2.

Pick one of the topics and:

(1) In five paragraphs or less, summarize the lecture.

(2) Address as many questions raised in lecture as possible.

(3) List the remaining questions that you have.
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