
Reading assignment. Schroeder, section 4.2.

0.1 Heat engines

We know from common experience that mechanical energy is eventually
degraded to heat through friction and other losses. But the reverse never
happens spontaneously, because of the second law of thermodynamics—the
degraded state, in which the atoms of the materials whose surfaces made
contact during the mechanical process undergo random thermal motion
rather than systematic mechanical motion, has greater entropy.

The goal of a heat engine it to try to coax some useful work from thermal
energy. Clearly, we can’t just place a cylinder with a piston in contact with
a gas and expect the piston to begin moving, because that would violate
the second law, as we noted above. But it is possible to intervene in a
heat-transfer process and extract some of the energy as useful work:
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The idea is that the engine, which is supposed to be unchanged by the
net process, absorbs some heat Qh from a hot system and uses that to
produce some useful work output W , while dumping a portion Qc of the
heat into a cold system. Here the terms “hot” and “cold” refer to the
relative temperatures of systems A and B.

0.1.1 An upper bound to heat-engine performance

There are two laws that constrain the process. The first law of thermody-
namics, conservation of energy, requires that

Qh = Qc + W . (1)

Note that we’re assuming all these quantities are positive, given the sense
defined by the arrows in the figure.

The second law of thermodynamics, entropy maximization, requires that
if the process is to proceed, the total entropy must increase. Assuming
the work done is quasistatic, there will be no new entropy created in the
mechanical process, so only the heat transfers change the entropy:

∆Stot = ∆Sh + ∆Sc ≥ 0 , (2)
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where the inequality follows from the second law. Note again that the
engine itself is unchanged by the process—it is merely a facilitator.

These two laws conspire to set limits on the performance of the system,
and to determine what are those limits, we need a measure of the perfor-
mance. Since the goal is the production of useful work, and the input to
the process is Qh, an appropriate definition is

E =
W

Qh
. (3)

We might call this a coefficient of performance, or an efficiency. The heat
output Qc is waste heat, in the sense that it can’t be used in this process
in any way to improve its efficiency, though that does not preclude its use
in other ways. Some of the waste heat from your automobile engine heats
the car in winter, for example.

Since we’re interested in obtaining upper limits on the performance,
we’ll suppose the heat transfers Qh and Qc occur quasistatically, so that

∆Sh = −Qh

Th
and ∆Sc =

Qc

Tc
. (4)

Also implicit in these expressions is the assumption that the hot and cold
subsystems are actually reservoirs—they are sufficiently large that their
temperatures remain fixed, even though we are removing or adding energy
to them. It’s straightforward to compute the entropy change via integration
if the temperatures shift, but it’s an unnecessary complication.

With those forms for the energy changes in mind, we can write the
condition imposed by the second law as:

Qc

Tc
− Qh

Th
≥ 0 . (5)

To obtain E , we want to find the ratio W/Qh, so we’ll use the first law both
to introduce W and to eliminate Qc:

Qc = Qh −W . (6)

Substituting this into the condition given by the second law gives

Qh −W

Tc
− Qh

Th
≥ 0 . (7)

Now just solve that for W/Qh, to get

E =
W

Qh
≤ 1− Tc

Th
. (8)

Thus, the second law gives us an upper bound to the performance of any
heat engine. Any real engine will suffer from frictional losses, nonquasistatic
processes and other imperfections that necessarily reduce its performance
below this upper bound.

Some points to note:
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• The second law requires that some heat Qc be wasted in the process:

Qc ≥ Qh
Tc

Th
. (9)

• When Tc = Th, all of the heat Qh must be wasted, and E ≤ 0.

• If we could make Tc = 0, then the upper bound on E becomes one.
Of course, that’s impossible, and even if it were possible, it would be
impractical. We use heat reservoirs that are convenient, not ones that
we have to take extreme measures to construct.

0.1.2 The Carnot cycle

Sadi Carnot invented an imaginary cyclic process that has an efficiency that
equals the limit set by the second law. It is similar in its general features
to familiar cyclic engines, so it serves as a useful benchmark against which
real engines can be measured. The engine consists of a system containing
a “working substance,” such as a gas, that can absorb or release heat and
can change some extensive variable, such as volume, in a way that can be
harnessed to do work. A useful model is a gas in a cylinder with a piston,
but there are many other possibilities. We’ll describe the process in terms
of a gas as the working substance.

The cycle consists of four steps, all of which take place quasistatically.
As in the general discussion above, there are two subsystems, one of which
has temperature Th and serves as a source of heat for the engine; the other
has temperature Tc, and serves as a sink for the waste heat. We’ll assume
the hot and cold subsystems are large reservoirs of thermal energy, so their
temperatures are not affected by the heat transfers to and from the working
substance.

1. The working substance, already at the temperature Th of the hot
reservoir, is placed in thermal contact with that reservoir. It then ab-
sorbs heat from the reservoir and expands isothermally (the reservoir
keeps its temperature constant) while doing work against the piston.
The volume increases, the pressure decreases, and the entropy in-
creases by Qh/Th, the amount by which the entropy of the reservoir
decreases.

2. The working substance is disconnected from the hot reservoir and
thermally isolated. It continues to expand, now adiabatically (no
heat flow), doing additional work against the piston. The volume
increases, the temperature and pressure decrease, and the entropy
remains constant because of the lack of heat flow. The expansion is
terminated when the temperature reaches that of the cold reservoir,
Tc.
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3. The working substance is placed in thermal contact with the cold
reservoir at temperature Tc and compressed by the piston isother-
mally. The piston does work on the working substance, undoing some
of the useful work done in the first two steps. The volume decreases,
the pressure increases, and the entropy decreases as heat flows from
the working substance into the cold reservoir. The step terminates
when the entropy of the working substance has decreased to its initial
value at the beginning of step 1, at which point the entropy change
during the step is Qc/Tc.

4. The working substance is disconnected from the cold reservoir and
thermally isolated. It continues to be compressed, now adiabatically.
The volume decreases, the temperature and pressure increase, and
the entropy is unchanged. The piston continues to do work on the
working substance, undoing still more of the useful work done in the
first two steps. This step terminates when the temperature reaches
that of the hot reservoir, Th.

At the end of the cycle, the working substance is back in its initial state,
with the same energy, entropy, volume, pressure, and temperature it had
when the cycle started. That is, there has been no net change to the engine
itself. What has happened is that heat Qh has been removed from the
hot reservoir, heat Qc has been added to the cold reservoir, and some net
beneficial work has been done against the piston.

Here’s a graph of the cycle in the temperature vs entropy plane:

3

4 2

1

S

T

Th

Tc

S1 S2

4



Here’s the corresponding graph in the pressure vs volume plane:
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Recall from an exercise we did long ago that adiabats are steeper than
isotherms in the pressure vs volume diagram, because heat transfer in
isothermal processes reduces pressure changes.

Note that there is no net change in the entropy or the energy U(S, V,N)
of the working substance, so the only effects are the heat transfers Qh and
Qc to the reservoirs and the net work done by the working substance.
[EOC, Wed. 2/22/2006, #19]

Reading assignment. Schroeder, section 5.1.

Exercise. Show that the efficiency of a Carnot engine equals the maximum
permitted by the second law:

E =
W

Qh
= 1− Tc

Th
. (10)

Note that the point is to show that the Carnot engine actually achieves the
maximum possible efficiency, not that it shares with all other heat engines
the property of not exceeding that value.

There are a couple of additional interesting points to note regarding the
Carnot cycle:

• Since the steps in the Carnot cycle are quasistatic, it’s impractical to
try to build a real engine based closely on it. In particular, the heat
flows Qh and Qc take place between systems at the same temperature,
which makes them infinitely slow. In a real engine, the working sub-
stance cannot have exactly the same temperature as either reservoir
if heat is to flow at a reasonable rate.

• Since no new entropy is created in the quasistatic steps, the cycle is
reversible.

Question. What does the reverse process do?

Answer: It takes work input and trnasfers energy from the cold
reservoir to the hot reservoir. That makes it a refrigerator (or air
conditioner or heat pump.)
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HW Problem. Schroeder problem 4.1, p. 124.

HW Problem. Schroeder problem 4.3, p. 124.

HW Problem. Schroeder problem 4.6, pp. 126–127.

0.1.3 Refrigerators

As was hinted at above, we can think of a refrigerator as a cyclic heat
engine running in reverse. Indeed, the Carnot cycle run in reverse removes
heat from the cold reservoir, dunps heat into the hot reservoir, and requires
work input to accomplish the task. The generic diagram of a refrigeration
process looks just like that of a heat engine, apart from reversal of all three
energy flows:
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Since all of the heat flows and the work flow are reversed relative to the
heat engine, we’ll reverse the sign conventions to make them all positive.
The analysis of the process is much the same as for a heat entine, but we
need a slightly different definition of performance:

COP =
Qc

W
, (15)

where “COP” stands for coefficient of performance. Here the useful result
or benefit is the heat Qc removed from the cold reservoir, and the energy
input, or cost, is the work W required to power the refrigerator.

As was the case for a heat engine, the first and second laws of thermo-
dynamics set an upper limit on the performance:

1st law: Qh = W + Qc

2nd law: ∆Stot = ∆Sh + ∆Sc =
Qh

Th
− Qc

Tc
≥ 0 .

(16)

From the first law and the definition of the coefficient of performance, we
find

COP =
Qc

Qh −Qc
=

1
(Qh/Qc)− 1

. (17)

But the second law tells us that

Qh

Qc
≥ Th

Tc
, (18)
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so the coefficient of performance must satisfy the inequality

COP ≤ 1
(Th/Tc)− 1

(refrigerator) . (19)

Notice that the best performance limit is achieved when Th = Tc, that
is, for the maximum value of Tc/Th, rather than for the minimum of that
ratio as we found for a heat engine.

HW Problem. Schroeder problem 4.14, p. 130.

Throttling process or Joule-Thomson process

[See Schroeder pp. 139–143] This is a process that is useful in refrigeration,
particularly in liquefaction of gases, but it turns out also to be an interesting
application of enthalpy, a quantity we encountered early on and will be
encountering again shortly. You may be familiar with common cases in
which expansion of a gas through a restricting valve causes the gas to cool.
This happens, for example, when you let the air out of a tire, and on a
cold day that can be quite painful for the finger operating the valve. You
can let pressurized carbon dioxide out of a cartridge and find that it cools
enough to solidify, forming dry-ice snow.

A simple analysis of the effect is based on a scheme in which constant
pressure is maintained by pistons on each side of a flow-restricting plug:
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Consider a portion Vi of the gas on the left passing through the plug and
having volume Vf at pressure Pf afterward. The process is adiabatic (no
heat flow), so the change in energy of the gas is due entirely to the work
done by the pistons during the flow. The pressure is constant on both sides,
so the work done by each piston is a simple PV product:

Uf − Ui = PiVi − PfVf , (20)

the negative sign of the work of the piston on the right arising because that
piston does negative work on the gas. This implies equality of the initial
and final enthalpies:

Uf + PfVf = Ui + PiVi or Hf = Hi , (21)
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where we’ve used the definition of enthalpy in terms of energy:

H = U + PV . (22)

Let’s see what happens when we try this out on an ideal gas. Its energy
is given by the equipartition theorem:

U =
f

2
NkT , (23)

where f is the number of degrees of freedom, and its PV product is given
by the ideal-gas law as

PV = NkT . (24)

Therefore, its enthalpy is

Hideal =
f

2
NkT + NkT =

(
f

2
+ 1

)
NkT . (25)

Since Hideal is proportional to T , the constancy of the enthalpy in a throt-
tling process implies constancy of the temperature as well. That is, the
effect vanishes for an ideal gas. Thus, if a throttling process is to change
the temperature, that effect must originate in the nonideality of real gases.
[EOC, Fri. 2/24/2006, #20]
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