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3:	Second	harmonic	wave	genera7on	
and	propaga7on	

•  Separa7on	of	wave	eqn	into	frequency	
channels	(Boyd	2.1)	

•  Derive	equa7ons	for	SHG	
–  	Boyd	2.2	(sum-freq	version),	2.7	(first	part)	

•  Non-depleted	pump	solu7on		
– Boyd	2.7		
– Perfect	phase	matching	
–  Including	phase	mismatch	

Nonlinear	wave	equa.on	

•  Generalize	for	NL	polariza7on	

–  For	now,	neglect	vector	character	of	response	
–  Expand	polariza7on	as	a	Taylor	series	

•  Any	1/n!	factors	are	included	in	defini7on	of	χ’s		

–  Separate	linear	from	NL	part:	
–  Important:	χ(1)	is	evaluated	at	the	ω	of	the	E-field.		

–  Now	PNL	is	the	source	term	to	the	linear	eqn		

   
∇2E− 1

c2

∂2E
∂t2 = µ0

∂2 P
∂t2

   
P = ε0 χ (1)E + χ (2)E2 + χ (3)E3 +!( )

  P = ε0χ
(1)E + PNL
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This	expression	assumes	that	both	
sides	are	harmonic	at	the	same	ω	
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Signal	channels	
•  We’ve	seen	that	the	nonlinear	polariza7on	can	have	
many	frequency	components	(ωn)	and	wave	
direc7ons	(kn)	

•  Total	field	is	sum	of	all	components:	

	
–  In	general,	there	can	be	different	k’s	at	the	same	
frequency	ωn	(e.g.	diffrac7on	from	NL	gra7ng)	

– With	this	conven7on,	field	envelopes	are	

•  Similarly,		

			  

E r,t( ) = En r,t( )
n>0
∑ = E

!"
n r,t( )cos kn ⋅r−ωnt⎡⎣ ⎤⎦

n>0
∑

= An r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡
⎣

⎤
⎦

n>0
∑

Real	field	

			  An =
1
2E
!"

n

			
P r,t( ) = Pn r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡

⎣
⎤
⎦

n>0
∑

Signal	channels:	frequency	separa.on	
•  Put	sum	of	different	harmonic	components	into	WE	

•  Collect	terms	with	same	ωm	
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⎦
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∂t2 χm
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⎣
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⎣
⎤
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⎠⎟

Am r,t( )ei km⋅r−ωmt( ) = µ0

∂2
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•  Time	average	intensity	can	be	calculated	from	the	field:	

•  With	the	conven7on	that	

•  Now	we	can	write	the	field	over	a	sum	of	±	frequencies			

Intensity	calcula.on	

		  In =
1
2ε0ncE

!"
n

2
= 1

2ε0ncE
!"

n⋅E
!"!

n
*

			  An =
1
2E
!"

n

			In =2ε0nc An

2
=2ε0ncAn ⋅An

*

			
E r,t( ) = An r ,t( )exp i kn ⋅r−ωnt( )( )+ c.c.⎡

⎣
⎤
⎦

n
∑

•  Start	with	frequency-separated	inhomogeneous	
wave	equa7on	
–  For	simplicity,	assume	all	waves	are	CW	plane	waves,	
propaga7ng	in	z-direc7on,	polarized	in	x-direc7on	

–  Assume	A’s	depend	on	z	only	

	

•  Find	NL	polariza7on	term	that	oscillates	at	the	
frequency	ωm	that	is	on	the	RHS	

Eqns	for	second	harmonic	genera.on	

   

∂2

∂z2 −
nm

2

c2

∂2

∂t2

⎛

⎝⎜
⎞

⎠⎟
Am z( )ei km⋅r−ωmt( ) = µ0

∂2

∂t2 Pm z( )ei km⋅r−ωmt( )
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•  Evaluate	NL	polariza7on,	suppress	vector	direc7on	

•  Pick	out	terms	with	the	same	7me	dependence	as	RHS	
–  At	ω2	=	2ω1,	

–  Evaluate	7me	deriva7ves,	cancel	common	7me	dependence	

Eqns	for	second	harmonic	genera.on	

  
∂2

∂z2 A2 z( )ei k2z( ) + ω 2
2n2

2

c2 A2 z( )ei k2z = −
ω 2

2

c2 χ (2) A1
2 z( )ei2k1z

   
P(2) = ε0χ

(2) A1 ei k1⋅r−ω1t( )+ A2 ei k2⋅r−ω2t( )+ c.c.( )2

   P
(2) 2ω1( ) = ε0χ

(2) A1
2 ei2 k1⋅r−ω1t( )

   

∂2

∂z2 −
n2

2

c2

∂2

∂t2

⎛

⎝⎜
⎞

⎠⎟
A2 z( )ei k2⋅r−ω2t( ) = µ0ε0χ

(2) ∂2

∂t2 A1 z( )ei2 k1⋅r−ω1t( )

•  Evaluate	z	deriva7ves	

•  Terms	in	blue	cancel,	divide	out	k2z	term	

•  	Compare	terms	on	RHS:		
–  scale	length	for	growth	of	amplitude	~	L	

  

∂2 A2

∂z2 + 2i k2

∂A2

∂z
− k2

2 A2

⎛

⎝⎜
⎞

⎠⎟
ei k2z +

ω 2
2n2

2

c2 A2e
i k2z = −

ω 2
2

c2 χ (2) A1
2ei2k1z

Equa.on	for	SH	amplitude	growth	

  

∂2 A2

∂z2 + 2i k2

∂A2

∂z
= −

ω 2
2

c2 χ (2) A1
2ei 2k1z−k2z( )

   

∂2 A2

∂z2 ∼
1
L2 A2 , 2i k2

∂A2

∂z
∼

4π
Lλ2

A2
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•  If	changes	in	amplitude	are	slower	than	λ,	i.e.	

•  then	we	can	drop	the	second	deriva7ve	from	the	
equa7on:	

•  Since	eqn	was	2nd	order,	this	means	second	solu7on	
(counter-propaga7ng	wave)	is	ignored.	That	wave	
would	in	general	interfere	with	the	forward	wave,	
leading	to	interference	on	a	λ	scale.		

Slowly-varying	amplitude	approx	(SVEA)	

   
L≫ λ

4π

  
2i k2

∂A2

∂z
= −

ω 2
2

c2 χ (2) A1
2ei 2k1z−k2z( ) →

∂A2

∂z
= i

ω 2
2

2k2c
2 χ

(2) A1
2ei 2k1z−k2z( )

•  Look	for	a	2nd	equa7on	for	the	wave	oscilla7ng	at	ω1	
•  Calculate	NL	polariza7on	at	ω1	
•  Get	resul7ng	wave	equa7on	using	SVEA	

  

∂2

∂z2 −
n2

2

c2

∂2

∂t2

⎛

⎝⎜
⎞

⎠⎟
A1e

i k1z−ω1t( ) = µ0ε0χ
(2) ∂2

∂t2 2A2 A1
*ei k2z−ω2t( )−i k1z−ω1t( )

Second	equa.on	for	fundamental	

•  Notes	
•  	factor	of	2	on	RHS	because	of	two	combina7ons	
•  A2:	unconjugated:	up	arrow	
•  A1*:	down	arrow	
•  This	eqn	leads	to	deple7on	of	fund,	back	conversion	

  

∂A1

∂z
= i

ω1
2

k1c
2 χ

(2) A2 A1
*e− i 2k1z−k2z( )
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•  If	we	assume	A1	is	not	depleted,	A1	=	constant	
•  Solve	only	one	equa7on	

•  Phase	mismatch	results	from	n2≠	n1:	

non-depleted	pump:	SH	solu.on	

•  Assuming	phase	mismatch	=	0	(somehow)	

•  Field	grows	linearly	in	z	

  

∂A2

∂z
= i

ω 2
2

2k2c
2 χ

(2) A1
2ei 2k1z−k2z( )

  
Δk ≡ 2k1 − k2 = 2

ω1

c
n1 − n2( )

  
A2 z( ) = i

ω 2
2

2k2c
2 χ

(2) A1
2z

ω 2ωFrequency

R
ef

ra
ct
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e 
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de

x

•  Calculate	intensity,	using	our	conven7on	for	
amplitude	

SH	intensity:	non-depleted	pump	

		
I2 z( ) =2ε0n2c A2 2 =2ε0n2c ω2

2χ (2)

2k2c2
⎛

⎝
⎜

⎞

⎠
⎟

2

A1
4
z2

			In =2ε0nc An

2
=2ε0ncAn ⋅An

*

		
= 1
2ε0n2c

ω2
2χ (2)

2k2c2
⎛

⎝
⎜

⎞

⎠
⎟

2

I1
2z2
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A2 L( ) = iω 2
2d

k2c
2 A1

2L
eiΔk L −1( )
iΔk L

∂A2
∂z

= iω 2
2d

k2c
2 A1

2eiΔk z

SHG	without	phase-matching	

→ 1
2ε0n2c

I2 z( ) = 1
2ε0n1c

⎛
⎝⎜

⎞
⎠⎟

2

I1
2 ω 2d

n2c
⎛
⎝⎜

⎞
⎠⎟

2

L2
sin Δk L / 2( )

Δk L / 2
⎛
⎝⎜

⎞
⎠⎟

2

→ I2 L( ) = ω 2
2d 2

2ε0n1
2n2c

3 I1
2L2 sinc2 Δk L / 2( )

A2 L( ) = iω 2
2d

k2c
2 A1

2 eiΔk z dz
0

L

∫Integrate:	

I2 = 2ε0n2c A2
2

Convert	to	intensity	

Non-depleted	pump	approxima7on:	treat	A1	as	constant	

As	a	func7on	of	L	and	fixed	|Δk|>0:		 I2 L( ) = ω 2
2d 2

2ε0n1
2n2c

3 I1
2 4
Δk2

sin2 Δk L / 2( )
Yield	oscillates:	
•  Period	=	“coherence	length”	
•  Amplitude	propor7onal	to		

Lcoh = 2π / Δk
max I2( )∝1/ Δk2

		d ≡ χ (2) 2

Input	beam	

Light	created	in	real	crystals	

Far	from		
phase-matching:	

Closer	to		
phase-matching:	

SHG	crystal	

Input	beam	

SHG	crystal	

Note	that	SH	beam	is	brighter	as	phase-matching	is	achieved.	

Output	beam	

Output	beam	


