3: Second harmonic wave generation
and propagation
» Separation of wave eqn into frequency
channels (Boyd 2.1)
* Derive equations for SHG
— Boyd 2.2 (sum-freq version), 2.7 (first part)
* Non-depleted pump solution
— Boyd 2.7
— Perfect phase matching
— Including phase mismatch

Nonlinear wave equation

* Generalize for NL polarization
1 O°E o’P

VE-———=U,—
¢ ot ot
— For now, neglect vector character of response
— Expand polarization as a Taylor series

e Any 1/n! factors are included in definition of x’s

P=¢, (}((“E+ xPE 4+ yVE .. )
— Separate linear from NL part: P=¢,y""E+P"
— Important: x?) is evaluated at the w of the E-field.

— Now PN s the source term to the linear egn
n’E_ o’PV

VE-L — This expression assumes that both
et o’ 9 sides are harmonic at the same w
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Signal channels

* We've seen that the nonlinear polarization can have
many frequency components (w,) and wave
directions (k)

* Total field is sum of all components:

E(r,t) = %En (r,t) = ggi, (r,t)cos[kn T— a)nt]
= %[An (r,t)exp(i(kn -r—a)nt))+c.c.}

— In general, there can be different k’s at the same
frequency w, (e.g. diffraction from NL grating)

Real field

— With this convention, field envelopes are |A =27F,

n

 Similarly, P(r,t) - Z[Pn (r,t)exp(i(kn -r—a)nt))+c.c.}

Signal channels: frequency separation

* Put sum of different harmonic components into WE

[vz _cizg_;jz[Am(r,t)exp(i(km r-o)ree]

m>0

82
= U,E, ?2 20 [Am (r,t)exp(i(km r— wmt)) + c.c.}

m>0

az NL .
+ U, yZ[Pm (r,t)exp(z(km ‘r— a)mt)) + c.c}

m>0

* Collect terms with same w,,
, 1 m 0’ i(k,r-o,) _ 0’ NL i(k, r-w,1)
[V —c—z(l-i-xn )y Am(r,t)e —‘onpm (r,t)e

2
nm
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Intensity calculation

* Time average intensity can be calculated from the field:

2

_1 Fl -1 F T
n—zeonc‘fn —Zeoncfn F.

e With the convention that |A

Il
N =
e

2 *
In=2£0nc|An| =2¢ ncA -A
* Now we can write the field over a sum of + frequencies

E(r,t) = ;[An (r,t)exp(i(k" r— wnt))+c.c.}

Eqns for second harmonic generation

» Start with frequency-separated inhomogeneous
wave equation

— For simplicity, assume all waves are CW plane waves,
propagating in z-direction, polarized in x-direction
— Assume A’s depend on z only

82 ? 82 ik r-w t 82 ik r-w t
[Q—Z'—’;?]Am(z)e(k” ’”):,uome(z)e(km %

* Find NL polarization term that oscillates at the
frequency w, that is on the RHS
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Eqns for second harmonic generation
* Evaluate NL polarization, suppress vector direction
p . 2
P(Z) — 80%(2)(141 e’(kl'r’a’lt)+ 1426’(1‘2'“’“’2’)_'_6‘0')

* Pick out terms with the same time dependence as RHS

— At w, = 2(1)1, P(z) (2(01) _ 80){(2)14.'2 ez‘Z(kl-r—w]z)
82 n ? 82 ikz-rfa)zt 2) k -0t
(__L_ Az(z)e( )=y080)(( 2A1( ) )
— Evaluate time derivatives, cancel common time dependence

a—zz(Az(Z)eikzz)+£f§A2(z)eikzz= (2’22 Z(Z)A ( ) 12k

0z c

Equation for SH amplitude growth

* Evaluate z derivatives
9> 4 94, R onl W, :
l 2" ikyz 2 (2) 42 i2kz
( +2lk k2 , —2A2€ 2 ——7)( A] e

0z ? 0z c
e Terms in blue cancel, divide out k,z term
0’ 4, 04, o {2k
+2 k _ (2)A2 1(2klz /czz)
0z° 29z & xAe

* Compare terms on RHS:
— scale length for growth of amplitude ~ L

0’4, 1 04, Arm
~— 4, 2ik,—=2~——A4,
LS "z LA, ?
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Slowly-varying amplitude approx (SVEA)

* If changes in amplitude are slower than A, i.e. L> 41
T

* then we can drop the second derivative from the
equation:
2

aAQ > i(2k z—k aAQ Q) 2kz—k

29k 2 @) 42,2k kz) _ O . Dy @142 (2kz—ky2)

1282 czx 1€ 0z 2kczx

* Since egn was 2" order, this means second solution
(counter-propagating wave) is ignored. That wave
would in general interfere with the forward wave,
leading to interference on a A scale.

Second equation for fundamental

* Look for a 2" equation for the wave oscillating at w,
* Calculate NL polarization at w,
* Get resulting wave equation using SVEA

2 2 2 P
[a_ — ni a_] Alel(klz_wlt) — u080%(2) % 2A2 Al*el(kzz—wzt)—t(klz—w]t)

d w’ * —i{2kz—hy2)
81:1 k 12 Z(Z)AzA.l Zk k,y
* Notes
» factor of 2 on RHS because of two combinations
* A,:unconjugated: up arrow
* A,*:down arrow
* This eqn leads to depletion of fund, back conversion

— —
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non-depleted pump: SH solution

If we assume A, is not depleted, A, = constant

Solve only one equation

2
a_Azz 9 P Alzei(%z—kf)

] —

dz 2k202
Phase mismatch results from n

[
Refractive
index

w
Ak=2k —k =2—(n —n .
! 2 c ( ! 2) w Frequency
* Assuming phase mismatch = 0 (somehow)
2
w
) _i P @ 0
Z(Z) 2k202% 4z

* Field grows linearly in z

20

SH intensity: non-depleted pump

* Calculate intensity, using our convention for

amplitude
2 *
I,=2g,nc|A | =2¢,ncA A

12(2)=280n2c|A2|2=280n2c[“2’z:£ fj 4 2
2

2
_ 1 (6022)((2)) [ 252
2e,n,c\ 2kc® )t
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SHG without phase-matching

Non-depleted pump approximation: treat A, as constant
aAZ w22d 2 iAk 2

— l A et z dE (2) 2

0z ke & /

2

Integrate: A, (L)
2 iAkL_l
n()=i2d o )
k,c iAkL

2
Convert to intensity I, = 2&,n,¢|A,|

2 2 2

in(AkL/2

L 12<z)=[ ! jzﬁ(—“’z"j Lz(—sm( >]
2¢gyn,c 2gn,c n,c

AkL/2

w22d2 272 : 2
—)12(L)=m11 L sinc (AkL/Z)
0°"1 "2

2 L
NOX) ;
=i k2 > Alzje‘Mzdz
¢ 0

2

,’d’ 4
As a function of L and fixed |Ak|>0: 1,(L)= WIIZESIHZ(ML/Z)
Yield oscillates:
«  Period = “coherence length” L, =27/ Ak
+ Amplitude proportional to max (1, ) o<1/ Ak

Light created in real crystals

Far from
phase-matching:

SHG crystal

q

Input beam

Closer to
phase-matching:

SHG crystal

Input beam

Note that SH beam is brighter as phase-matching is achieved.

_—

Output beam

Output beam
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