1.1.6 Following is a statement of a theorem which can be proven using calculus or precalculus mathematics. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form $f(x) = ax^2 + bx + c$ and a < 0, then the function f has a maximum value when $x = \frac{-b}{2a}$.

Using only this theorem, what can be concluded about the functions given by the following formulas?

- 1. $g(x) = -8x^2 + 5x 2$ 2. $f(x) = -4x^2 - 3x + 7$
- 3. $F(x) = -x^4 + x^3 + 9$
- **1.1.7** Following is a statement of a theorem which can be proven using the quadratic formula. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form $f(x) = ax^2 + bx + c$ and ac < 0, then the function f has two x-intercepts.

Using only this theorem, what can be concluded about the functions given by the following formulas?

- 1. $g(x) = -8x^2 + 5x 2$ 2. $f(x) = -4x^2 - 3x + 7$ 3. $F(x) = -x^4 + x^3 + 9$
- **1.1.8** Following is a statement of a theorem about certain cubic equations. For this theorem, b represents a real number.

Theorem A If f is a cubic function of the form $f(x) = x^3 - x + b$ and b > 1, then the function f has exactly one x-intercept.

Following is another theorem about x-intercepts of functions:

Theorem B If f and g are functions with $g(x) = k \cdot f(x)$ where k is a nonzero real number, then f and g have exactly the same x-intercepts.

Using only these two theorems and some simple algebraic manipulations, what can be concluded about the functions given by the following formulas?

1. $f(x) = x^3 - x + 7$ 2. $r(x) = x^4 - x + 11$ 3. $F(x) = 2x^3 - 2x + 7$

1.2.4 Construct a know-show table and write a complete proof for the following statement:

a. If m is an even integer, then 5m + 7 is an odd integer.

1.2.5 Construct a know-show table and write a complete proof for the following statement:

b. If m is an odd integer, then $3m^2 + 7m + 12$ is an even integer.

2.2.6 Prove the logical equivalency, $[P \lor Q) \to R] \equiv (P \to R) \land (Q \to R)$.

2.2.12 Let x be a real number. Consider the following conditional statement:

If
$$x^3 - x = 2x^2 + 6$$
, then $x = -2$ or $x = 3$

Which of the following statements have the same meaning as this conditional statement and which ones are negations of this conditions statement? Explain each conclusion.

(a) If $x \neq -2$ and $x \neq 3$, then $x^3 - x \neq 2x^2 + 6$ (b) If x = -2 or x = 3, then $x^3 - x = 2x^2 + 6$ (c) If $x \neq -2$ or $x \neq 3$, then $x^3 - x \neq 2x^2 + 6$ (d) If $x^3 - x = 2x^2 + 6$ and $x \neq -2$, then x = 3(e) If $x^3 - x = 2x^2 + 6$ or $x \neq -2$, then x = 3(f) $x^3 - x = 2x^2 + 6$, and $x \neq -2$, and $x \neq 3$ (g) $x^3 - x \neq 2x^2 + 6$ or x = -2 or x = 3