1.1.6 Following is a statement of a theorem which can be proven using calculus or precalculus mathematics. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form $f(x)=a x^{2}+b x+c$ and $a<0$, then the function f has a maximum value when $x=\frac{-b}{2 a}$.

Using only this theorem, what can be concluded about the functions given by the following formulas?

1. $g(x)=-8 x^{2}+5 x-2$
2. $f(x)=-4 x^{2}-3 x+7$
3. $F(x)=-x^{4}+x^{3}+9$
1.1.7 Following is a statement of a theorem which can be proven using the quadratic formula. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form $f(x)=a x^{2}+b x+c$ and $a c<0$, then the function f has two x-intercepts.

Using only this theorem, what can be concluded about the functions given by the following formulas?

1. $g(x)=-8 x^{2}+5 x-2$
2. $f(x)=-4 x^{2}-3 x+7$
3. $F(x)=-x^{4}+x^{3}+9$
1.1.8 Following is a statement of a theorem about certain cubic equations. For this theorem, b represents a real number.

Theorem A If f is a cubic function of the form $f(x)=x^{3}-x+b$ and $b>1$, then the function f has exactly one x-intercept.

Following is another theorem about x-intercepts of functions:
Theorem B If f and g are functions with $g(x)=k \cdot f(x)$ where k is a nonzero real number, then f and g have exactly the same x-intercepts.

Using only these two theorems and some simple algebraic manipulations, what can be concluded about the functions given by the following formulas?

1. $f(x)=x^{3}-x+7$
2. $r(x)=x^{4}-x+11$
3. $F(x)=2 x^{3}-2 x+7$
1.2.4 Construct a know-show table and write a complete proof for the following statement:
a. If m is an even integer, then $5 m+7$ is an odd integer.
1.2.5 Construct a know-show table and write a complete proof for the following statement:
b. If m is an odd integer, then $3 m^{2}+7 m+12$ is an even integer.
2.2.6 Prove the logical equivalency, $[P \vee Q) \rightarrow R] \equiv(P \rightarrow R) \wedge(Q \rightarrow R)$.
2.2.12 Let x be a real number. Consider the following conditional statement:

$$
\text { If } x^{3}-x=2 x^{2}+6, \text { then } x=-2 \text { or } x=3
$$

Which of the following statements have the same meaning as this conditional statement and which ones are negations of this conditions statement? Explain each conclusion.
(a) If $x \neq-2$ and $x \neq 3$, then $x^{3}-x \neq 2 x^{2}+6$
(b) If $x=-2$ or $x=3$, then $x^{3}-x=2 x^{2}+6$
(c) If $x \neq-2$ or $x \neq 3$, then $x^{3}-x \neq 2 x^{2}+6$
(d) If $x^{3}-x=2 x^{2}+6$ and $x \neq-2$, then $x=3$
(e) If $x^{3}-x=2 x^{2}+6$ or $x \neq-2$, then $x=3$
(f) $x^{3}-x=2 x^{2}+6$, and $x \neq-2$, and $x \neq 3$
(g) $x^{3}-x \neq 2 x^{2}+6$ or $x=-2$ or $x=3$

